
WRDC-TR-90-8007
Volume V
Part 4

AD-A252 449

INTEGRATED INFORMATION SUPPORT SYSTEM (IISS)
Volume V.- Common Data Model Subsystem
Part 4 - Information Modeling Manual - IDEFI Extended Development
Specification for the CDM Subsystem

J. Althoff, M. Apicella, S. Singh

Control Data Corporation O TIC
Integration Technology Services
2970 Presidential Drive FSLECT E
Fairborn, OH 45324-6209 JU0 0 .

September 1990

Final Report for Period 1 April 1987 - 31 December 1990

Approved for Public Release; Distribution is Unlimited

92-14519
MANUFACTURING TECHNOLOGY DIRECTORATE
WRIGHT RESEARCH AND DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6533

6 W92 ~(

NOTICE

When Government drawings, specifications, or other data are used for any purpose other
than in connection with a definitely related Government procurement operation, the United
States Government thereby incurs no responsibility nor any obligation whatsoever, regardless
whether or not the government may have formulated, furnished, or in any way supplied the
said drawings, specifications, or other data. It should not, therefore, be construed or implied
by any person, persons, or organization that the Government is licensing or conveying any
rights or permission to manufacture, use, or market any patented invention that may in any way
be related thereto.

This technical report has been reviewed and is approved for publication.
This report is releasable to the National Technical
Information Service (NTIS). At NTIS, it will be
available to the general public, including foreign nations

DA D L. .1 SON, Prfject Manager DATE
Wr] t-Pat r AFB, OH 45433-6533

FOR THE COMMANDER:

'BRUCE A. RASMUSSEN, Chief DATE /

WRDC/MT
Wright-Patterson AFB, OH 45433-6533

If your address has changed, if you wish to be removed form our mailing list, or if the
addressee is no longer employed by your organization please notify WRDC/MTI, Wright-
Patterson Air Force Base, OH 45433-6533 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

*lndassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for Public Release;

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution is Unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
UM 620341002 WRDC-TR- 90-8007 Vol. V, Part 4

6a. NAME OF PERFORMING ORGANIZATION. b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Control Data Corporation; (if applicable) WRDC/MTI
Integration Technology Services I
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

2970 Presidential Drive
Fairborn, OH 45324-6209 WPAFB, OH 45433-6533

8a. NAME OF FUNDING/SPONSORING 3b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUM.
ORGANIZATION (if applicable)

Wright Research and Development Center, F33600-87-C-0464
Air Force Systems Command, USAF WRDC/MTI

10. SOURCE OF FUNDING NOS.
8c. ADDRESS (City, State, and ZIP Code)

Wright-Patterson AFB, Ohio 45433-6533 PROGRAM PROJECT TASK WORK UNIT
11. TITLE (Include Security Classification) ELEMENT NO. NO. NO. NO.

See Block 19 78011F 595600 F95600 20950607

12. PERSONAL AUTHOR(S)
Control Data Corporation: Althoff, J., Apicella, M., Singh, S.

13a. TYPE OF REPORT 113b. TIME COVERED 14. DATE OF REPORT (Yr.,Mo.,Day) 15. PAGE COUNT
Final Report 14/1/87-12/31/90 1990 September 30 131

16. SUPPLEMENTARY NOTATION

WRDC/MTI Project Priority 6203

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary end identify block no.)

FIELD GROUP SUB GR.
130 0905

19. ABSTRACT (Continue on reverse if necessary and identify block number)

This document is a modeling guide and reference manual for an extended version of the ICAM definition language for
information modeling, referred to as IDEF1X. The IDEF1X syntax, procedure, and documentation requirements for developing
a logical model of the semantic characteristics of data are described.

Block 11 - INTEGRATED INFORMATION SUPPORT SYSTEM (IISS)
Vol V - Common Data Model Subsystem
Part 4 - Information Modeling Manual - IDEF1 Extended Development

Specification for the CDM Subsystem

.20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

JNCLASSIFIED/UNLIMITED x SAME AS RPT. DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NO. 22c. OFFICE SYMBOL
(Include Area Code)

David L. Judson (513) 255-7371 WRDC,'MTI
EDITION OF 1 JAN 73 IS OBSOLETE

DD FORM 1473, 83 APR Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

UM 620341002
30 September 1990

FOREWORD

This technical report covers work performed under Air Force
Contract F33600-87-C-0464, DAPro Project. This contract is
sponsored by the Manufacturing Technology Directorate, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio. It was
administered under the technical direction of Mr. Bruce A.
Rasmussen, Branch Chief, Integration Technology Division,
Manufacturing Technclogy Directorate, through Mr. David L. Judson,
Project Manager. The Prime Contractor was Integration Technology
Services, Software Programs Division, of the Control Data
Corporation, Dayton, Ohio, under the direction of Mr. W. A.
Osborne. The DAPro Project Manager for Control Data Corporation
was Mr. Jimmy P. Maxwell.

The DAPro project was created to continue the development, test,
and demonstration of the Integrated Information Support System
(IISS). The IISS technology work comprises enhancements to IISS
software and the establishment and operation of IISS test bed
hardware and communications for developers and users.

The following list names the Control Data Corporation
subcontractors and their contributing activities:

SUBCONTRACTOR ROLE

Control Data Corporation Responsible for the overall Common
Data Model design development and
implementation, IISS integration and
test, and technology transfer of IISS.

D. Appleton Company Responsible for providing software
information services for the Common
Data Model and IDEFIX integration
methodology.

ONTEK Responsible for defining and testing a
representative integrated system base
in Artificial Intelligence techniques
to establish fitness for use.

Simpact Corporation Responsible for Communication
development.

Aooession For

NTIS GAJ
DT1C TAB E
Uann0,2nced 0
Just fIcat tcn

mane

UwSpef DistrIbuticn/

Avall&Allity Codes

Avail and/or
iii Diet Special

__ _ _ _ _ _ _ _ _ _ _ i _

UM 620341002
30 September 1990

Structural Dynamics Responsible for User Interfaces,
Research Corporation Virtual Terminal Interface,and Network

Transaction Manager design,
development, implementation, and
support.

Arizona State University Responsible for test bed operations
and support.

iv

UM 620341002
30 September 1990

TABLE OF CONTENTS

* Page

SECTION 1 INTRODUCTION 1-1

SECTION 2 DATA MODELING CONCEPTS 2-1
2.1 Managing Data as a Resource 2-1
2.2 The Three Schema Concept 2-2
2.3 Objectives of Data Modeling 2-5
2.4 The IDEFIX Approach 2-7

SECTION 3 IDEFIX SYNTAX AND SEMANTICS 3-1
3.1 Entities 3-1
3.2 Connection Relationships 3-3
3.3 Categorization Relationships 3-8
3.4 Non-Specific Relationships 3-11
3.5 Attributes 3-14
3.6 Primary and Alternate Keys 3-17
3.7 Foreign Keys 3-19

SECTION 4 MODELING PROCEDURES 4-1
4.1 Phase Zero 4-1
4.2 Phase One - Entity Definition 4-11
4.3 Phase Two - Relationship Definition 4-17
4.4 Phase Three - Key Definition 4-24
4.5 Phase Four - Attribute Definition 4-45

SECTION 5 DOCUMENTATION AND VALIDATION 5-1
5.1 Introduction 5-1
5.2 IDEF1X Kits 5-2
5.3 Standard Forms 5-3
5.4 The IDEF Model Walk-Through

Procedure 5-7

APPENDIX A GLOSSARY A-1

APPENDIX B COMPARISON OF IDEF1X WITH IDEFI B-1

APPENDIX C REFERENCES C-1

v

UM 620341002
30 September 1990

LIST OF ILLUSTRATIONS

Figure Title Page

2-1 Components of Information 2-2
2-2 Traditional Views of Data 2-3
2-3 Three-Schema Approach 2-4
2-4 Semantic Data Models 2-6
2-5 Basic Modeling Concepts 2-8
3-1 Entity Syntax 3-3
3-2 Relationship Cardinality Syntax 3-5
3-3 Identifying Relationship Syntax 3-6
3-4 Non-Identifying Existence-Dependency

Relationship Syntax 3-7
3-5 Categorization Relationship Syntax 3-10
3-6 Non-Specific Relationship Syntax 3-13
3-7 Attribute and Primary Key Syntax 3-16
3-8 Alternate Key Syntax 3-18
3-9 Foreign Key Syntax Examples 3-21
3-10 Role Name Syntax 3-22
4-1 Team Organization 4-4
4-2 Synthesizing an Entity 4-13
4-3 Sample Entity Pool 4-15
4-4- Entity/Relationship Matrix 4-18
4-5 Entity-Level Diagram 4-21
4-6 Phase Two (Entity-Level) Diagram

Example 4-22
4-7 Reference Diagram (FEO) 4-24
4-8 Example Reference Diagram 4-25
4-9 Non-Specific Relationship Refinement 4-26
4-10 Sample of a Function View 4-29
4-11 Attribute Examples 4-31
4-12 Key Forms 4-33
4-13 Key Migration to an Identifier-

Dependent Entity 4-35
4-14 Migration to an Identifier-

Independent Entity 4-36
4-15 Attribute Role Names 4-37
4-16 No-Repeat Rule Refinement 4-38
4-17 "No-Null" Rule Refinement 4-39
4-18 Example Triad 4-40

UM 620341002
30 September 1990

LIST OF ILLUSTRATIONS (CONTINUED)

Figure Title Page

4-19 Path Assertions.............................. 4-41
4-20 Entity/Attribute Matrix..................... 4-43
4-21 Example Phase III Function View

Diagram...................................... 4-44
4-22 Sample Attribute Pool........................ 4-47
4-23 Phase IV - Applying the

No-Null Rule.........................4-49
4-24 Phase IV - Applying the No-Repea~t

Rule... 4-50
4-25 Example Phase Four Function View............ 4-52
5-1 Kit Cycle..................................... 5-2
5-2 Kit Cover Sheet.............................. 5-4
5-3 Standard Diagram Form........................ 5-5
5-4 Matrix Form.................................. 5-8
B-1 IDEF1X vs. IDEFl Entities................... B-4
B-2 IDEFlX vs. IDEFl Attributes.................B-7
B-3 IDEFiX vs. IDEFl Relationships...............B-11
B-4 Example 1..................................... B-13
B-5 Example 2 B-14
B-6 Example 3..................................... B-15
B-7 Example 4..................................... B-16
B-8 Example 5..................................... B-17
B-9 Example 6..................................... B-18
B-l0 Example 7..................................... B-19
B-11 Example 8..................................... B-20

vii

UM 620341002
30 September 1990

SECTION 1

INTRODUCTION

The purpose of this document is to define advanced
concepts, techniques, and procedures for the development of
logical models of the semantic characteristics of data. Within
the business environment, these semantic data models may serve
to support the management of data as a resource, the
integration of information systems, and the building of
computer databases.

The need for semantic data models was first recognized by
the U.S. Air Force in the mid-seventies as a result of the
Integrated Computer Aided Manufacturing (ICAM) Program. The
objective of this program was to increase manufacturing
productivity through the systematic application of computer
technology. The ICAM Program identified a need for better
analysis and communication techniques for people involved in
improving manufacturing productivity. As a result, the ICAM
Program developed a series of techniques known as the IDEF
(ICAM Definition) Methods. IDEF includes three different
modeling methodologies to graphically characterize the
manufacturing business environment.

o IDEFO is used to produce a "function model" which is
a structured representation of the activities or
processes within the environment or system.

o IDEFI is used to produce an "information model"
which represents the structure and semantics of
information within the environment or system.

o IDEF2 is used to produce a "dynamics model" which
represents the time varying behavioral
characteristics of the environment or system.

IDEFI was ori-ginally developed under the ICAM Program by
Hughes Aircraft and D. Appleton Company (DACOM) based on
internal developments of both companies as well as relational
theory concepts developed by Dr. E.F. (Ted) Codd and entity-
relationship modeling concepts by Dr. P.P.S. (Peter) Chen.
Over the last five years, IDEFI has been used extensively by
both aerospace and non-aerospace companies.

In 1983, the U.S. Air Force initiated the Integrated
Information Support System (IISS) Project under the ICAM
Program. The objective of this project was to provide the
enabling technology to logically and physically integrate a
network of heterogeneous computer hardware and software. The
IISS approach to integration focuses on the capture,
management, and use of a single semantic definition of the data
resource referred to as a "Conceptual Schema". This Conceptual
Schema is defined using the IDEFI modeling technique.

1-1

UM 620341002
30 September 1990

This document defines an extended version of IDEFI
(referred to as IDEFIX) based on the requirements and
experiences of the IISS project and applications within
industry. Improvements to the technique included enhanced
graphical representation, enhanced semantic richness, and
simplified development procedures. Over the past five years,
these extensions have been developed and tested by DACOM
through various Air Force and private projects with both major
aerospace corporations, such as General Dynamics, McDonnell
Douglas, Rockwell International and General Electric, and with
non-aerospace corporations, such as ARCO, Security Pacific
National Bank and Schering Plough.

This document is structured to serve both as an IDEFIX
modeling guide and as a reference manual. Section 2 discusses
overall data modeling concepts. The specific syntax and
semantics for an IDEFIX model are given in Section 3. Although
different approaches may be used to create a model, Section 4
provides a basic procedure for model building, assuming limited
automated support. The ICAM requirements for documentation and
model validation techniques are presented in Section 5. A
comparison of IDEFIX with IDEFI along with a glossary and a
list of references are contained in the appendices.

1-2

UM 620341002
30 September 1990

SECTION 2

DATA MODELING CONCEPTS

The focus of this manual is on the syntax and procedure
for IDEF1X data models. However, before getting into the tech-
nical details of IDEFIX in Sections 3 and 4, this Section will
discuss why data modeling is important and what are the overall
objectives of the IDEFIX approach.

2.1 Managing Data as a Resource

Over the past decade, there has been a growing awareness
among major corporations for the need to manage data as a re-
source. Perhaps one of the drivers to manage data as a re-
source is the requirement for flexibility in order to compete
in a very dynamic business environment. Many companies must
continually realiqn their organizations and procedures to ad-
just for advancements in technology and shifts in the market
places. In order to realign quickly and smoothly, companies
must recognize and manage the infrastructure of the business
which includes understanding the data and associated knowledge
required to run the business.

Many companies have formed special groups, such as Data
Administration or Information Resource Management, in order to
tackle the problem of managing data. The difficulty of their
jobs, however, is compounded by the rapid and diverse growth of
data. According to the Garner Group, a Stamford CT, market re-
search company, the average large corporation will require on-
line access to one trillion bytes of data by 1990, 50 times the
amount of data needed in 1985. The creation and use of this
data will be spread throughout the corporation. IBM has stated
that by the end of 1987 as many as 14 million business profes-
sionals will use workstations to house and process their own
data. Furthermore, an ICAM study showed that the data that al-
ready exists is generally inconsistent, untimely, inflexible,
inaccessible, and unaligned with current business needs.

In order to manage data, we must understand its basic
characteristics. Data can be thought of as a symbolic repre-
sentation of facts with meanings. A single meaning can be ap-
plied to many different facts. For example, the meaning "2ip
code" could be applied to numerous five digit numbers. A fact
without a meaning is of no value and a fact with the wrong
meaning can be disastrous. Therefore, the focus of data
management must be on the meaning associated with data.

"Information" can be defined as an aggregation of data for
a specific purpose or within a specific context. See Figure 2-
1. This implies that many different types of information can
be created from the same data. Statistically, 400 pieces of
data could be combined 10 to the 869 power different ways to

2-1

UN 620341002
30 September 1990

create various forms of information. Thus, the strategy to
manage the information resource must focus on managing the
meanings applied to facts, rather than attempting to control or
limit the creation of information.

2.2 The Three Schema Concept

Over the years, the skill and interest in building
information systems has grown tremendously. However, for the
most part, the traditional approach to building systems has on-
ly focused on defining data from two distinct views, the user
view and the computer view. From the user view, which will be
referred to as the "external schema", the definition of data is
in the context of reports and screens designed to aid individu-
als in doing their specific jobs. The required structure of
data from a usage view changes with the business environment
and the individual preferences of the user. From the -omputer

I Information

I II

Figure 2-1. Components of Information

2-2

UM 620341002
30 September 1990

view, which will be referred to as the "internal schema", data
is defined in terms of file structures for storage and retriev-
al. The required structure of data for computer storage de-
pends upon the specific computer technology employed and the
need for efficient processing of data.

These two views of data have been defined by analysts over
the years on an application by application basis as specific
business needs were addressed. See Figure 2-2. Typically, the
internal schema defined for an initial application cannot be
readily used for subsequent applications, resulting in the cre-
ation of redundant and often inconsistent definition of the
same data. Data was defined by the layout of physical records
and processed sequentially in early information systems. The

External Schema Internal Schema
- User View- - Computer View -

Figure 2-2. Traditional Views of Data

2-3

UM 620341002
30 September 1990

need for flexibility, however, lead to the introduction of
Database Management Systems (DBMS's), which allow for random
access of logically connected pieces of data. The logical data
structures within a DBMS are typically defined as either
hierarchies, networks or relations. Although DBMS's have
greatly improved the shareability of data, the use of a DBMS
alone does not guarantee a consistent definition of data. Fur-
thermore, most large companies have had to develop multiple
databases which are often under the control of different DBMS's
and still have the problems of redundancy and inconsistency.

The recognition of this problem led the ANSI/X3/SPARC
Study Group on Database Management Systems to conclude that in
an ideal data management environment a third view of data is
needed. This view, referred to as a "conceptual schema" is a
single integrated definition of the data within an enterprise
which is unbiased toward any single application of data and is
independent of how the data is physically stored or accessed.
See Figure 2-3. The primary objective of this conceptual sche-
ma is to provide a consistent definition of the meanings and
interrelationship of data which can be used to integrate,

Conceptual Schema

Eemal Neuae VWW - m
Schema Schema

Figure 2-3. Three-Schema Approach

2-4

30 UM 620341002
30 September 1990

share, and manage the integrity of data. A conceptual schema
must have three important characteristics:

1. It must be consistent with the infrastructure of the
business and be true across all application areas.

2. It must be extendible, such that, new data can be
defined without altering previously defined data.

3. It must be transformable to both the required user
views and to a variety of data storage and access
structures.

2.3 Objectives of Data Modeling

The logical data structure of a DBMS, whether hierarchi-
cal, network, or relational, cannot totally satisfy the
requirements for a conceptual definition of data because it is
limited in scope and biased toward the implementation strategy
employed by the DBMS. Therefore, the need to define data from
a conceptual view has lead to the development of semantic data
modeling techniques. That is, techniques to define the meaning
of data within the context of its interrelationships with other
data. As illustrated in Figure 2-4, the real world, in terms
of resources, ideas, events, etc., are symbolically defined
within physical data stores. A semantic data model is an
abstraction which defines how the stored symbols related to the
real world. Thus, the model must be a true reflection of the
real world.

A semantic data model can be used to serve many purposes.
Some key objectives include:

1. Planning of Data Resources

A preliminary data model can be used to provide an
overall view of the data required to run an enter-
prise. The model can then be analyzed to identify
and scope projects to build shared data resources.

2. Building of Shareable Databases

A fully developed model can be used to define an ap-
plication independent view of data which can be
validated by users and then transformed into a
physical database design for any of the various DBMS
technologies. In addition to generating databases
which are consistent and shareable, development costs
can be drastically reduced through data modeling.

3. Evaluation of Vendor Software

Since a data model actually reflects the infrastruc-
ture of an organization, vendor software can be
evaluated against a company's data model in order to
identify possible inconsistencies between the infra-

2-5

UN 620341002
30 September 1990

structure implied by the software and the way the

company actually does business.

4. Integration of Existing Databases

By defining the contents of existing databases with
semantic data models, an integrated data definition
can be derived. With the proper technology, the re-
sulting conceptual schema can be used to control
transaction processing in a distributed database en-
vironment. The U.S. Air Force Integrated Informa-
tion Support System (IISS) is an experimental devel-
opment and demonstration of this type of technology
applied to a heterogeneous DBMS environment.

Real World Physical Data Stores

Figure 2-4. Semantic Data Models

2-6

UM 620341002
30 September 1990

2.4 The IREFIX Approach

IDEFIX is the semantic data modeling technique described
by this document. The IDEFIX technique was developed to meet
the following requirements:

1. Support the development of conceptual schemas.

The IDEFlX syntax supports the semantic constructs
necessary in the development of a conceptual schema.
A fully developed IDEFIX model has the desired char-
acteristics of being consistent, extensible, and
transformable.

2. Be a coherent language.

IDEFlX has a simple, clean consistent structure with
distinct semantic concepts. The syntax and seman-
tics of IDEF1X are relatively easy for users to
grasp, yet powerful and robust.

3. Be teachable.

Semantic data modeling is a new concept for many
IDEFlX users. Therefore, the teachability of the
language was an important consideration. The lan-
guage is designed to be taught to and used by busi-
ness professionals and system analysts as well as
data administrators and database designers. Thus,
it can serve as an effective communication tool
across interdisciplinary teams.

4. Be well-tested and proven.

IDEFIX is based on years of experience with
predecessor techniques and has been thoroughly test-
ed both in Air Force development projects and in
private industry.

5. Be automatable.

IDEFlX diagrams can be generated by a variety of
graphics packages. In addition, an active three-
schema dictionary has been developed by the Air
Force which uses the resulting conceptual schema for
an application development and transaction process-
ing in a distributed heterogeneous environment.
Commercial software is also available which supports
the refinement, analysis, and configuration manage-
ment of IDEFlX models.

IDEF1X uses an entity-relationship approach to semantic
data modeling. The original development of IDEF1 was an exten-
sion to the entity-relationship modeling concepts of Dr. P.P.S.

2-7

UM 620341002
30 September 1990

(Peter) Chen combined with relational theory concepts developed
by-'Dr. E.F. (Ted) Codd. In addition to improvements in the
graphical representation and modeling procedures, IDEFlX en-
hancements to the semantic richness include the introduction of
categorization relationships (also called generalization). The
IDEFIX language also incorporates commercial development work
of the D. Appleton Company and The Database Design Group.

The basic constructs of an IDEFIX model are:

1. Things about which data is kept, e.g. people,
places, ideas, events, etc., represented by a box;

2. Relationships between those things, represented by
lines connecting the boxes; and

3. Characteristics of those things represented by at-
tribute names within the box.

The basic constructs are shown in Figure 2-5, and expanded up-
on in the remained of this document.

C onceptCo sr c

"Things")II

Relationships Between
Those "Things"

Characterstics of _ __ __

Those IThings"

Figure 2-5. Basic Modeling Concepts

2-8

UM 620341002
30 September 1990

SECTION 3

IDEFIX SYNTAX AND SEMANTICS

This Section will discuss the semantics (or meaning) of
each component of an IDEFIX model, the graphical syntax for
representing the component, and rules governing its use.
Although the components are highly interrelated, each one is
discussed separately without regard for the actual sequence of
construction. Section 4 discusses the procedure for building
an IDEFIX model which will conform to the defined syntax and
semantics.

The components of an IDEFIX model are:

1. Entities
- Identifier-Independent Entities
- Identifier-Dependent Entities

2. Relationships
- Identifying Connection Relationships
- Non-Identifying Connection Relationships
- Categorization Relationships
- Non-specific Relationships

3. Attributes/Keys
- Attributes
- Primary Keys
- Alternate Keys
- Foreign Keys

3.1 Entities

Entity Semantics

An "entity" represents a set of real or abstract things
(people, objects, places, events, states, ideas, pairs of
things, etc.) which have common attributes or characteristics.
An individual member of the set is referred to as an "entity
instance". A real world object or thing may be represented by
more than one entity within a data model. For example, John
Doe may be an instance of both the entity EMPLOYEE and BUYER.
Furthermore, an entity instance may represent a combination of
real world objects. For example, John and Mary could be an
instance of the entity MARRIED-COUPLE.

An entity is "identifier-independent" or simply
"independent" if each instance of the entity can be uniquely
identified without determining its relationship to another
entity. An entity is "identifier-dependent" or simply
"dependent" if the unique identification of an instance of the
entity depends upon its relationship to another entity.

3-1

UM 620341002
30 September 1990

Entity Syntax

An entity is represented as a box as shown in Figure 3-1.
If the entity is identifier-dependent then the corners of the
box are rounded. Each entity is assigned a unique name and
number which are separated by a slash, "/", and placed above
the box. The entity number is a positive integer. The entity
name is a noun phrase (a noun with optional adjectives and
prepositions) that describe the set of things the entity
represents. The noun phrase is singular, not plural.
Abbreviations and acronyms are permitted, however, the entity
name must be meaningful and consistent throughout the model. A
formal definition of the entity and a list of synonyms or
aliases must be defined in the model glossary. Although an
entity may be drawn in any number of diagrams, it only appears
once within a given diagram.

Entity Rules

1. Each entity must have a unique name and the same meaning
must always apply to the same name. Furthermore, the same
meaning cannot apply to different names unless the names
are aliases.

2. An entity has one or more attributes which are either
owned by the entity or inherited through a relationship
(See Foreign Keys in Section 3.7).

3. An entity has one or more attributes which uniquely
identify every instance of the entity. (See Primary and
Alternate Keys in Section 3.6).

4. Any entity can have any number of relationships with other
entities in the model.

5. If an entire foreign key is used for all or part of an
entity's primary key, then the entity is identifier-
dependent. Conversely, if only a portion of a foreign key
or no foreign key attribute at all is used for an entity's
primary key, then the entity is identifier-independent.

3-2

UM 620341002
30-September 1990

Identifier-Independent Entity

SYNTAX EXAMPLE

*itfy.RmOIt~ttftll~fEMPLOYEE42

Identifier-Dependent Entity

SYNTAX EXAMPLE

ftmty.W Sf ~ymW P.O. rEMW2

Figure 3-1. Entity Syntax

3.2 Connection Relationships

Connection Relationship Semantics

A "specific connection relationship" or simply "connection
relationship" (also referred to as a "parent-child or
existence-dependency relationship") is an association or
connection between entities in which each instance of one
entity, referred to as the parent entity, is associated with
zero, one, or more instances of the second entity, referred to
as the child entity, and each instance of the child entity is
associated with exactly one instance of the parent entity.
That is, an instance of the child entity can only exist if an
associated instance of the parent entity exists. For example,
a specific connection relationship would exist between the
entities BUYER and PURCHASE-ORDER, if a buyer issues zero, one,
or more purchase orders and each purchase order must be issued
by a single buyer. An IDEFiX model depicts the type or set of
relationship between two entities. A specific instance of the
relationship associates specific instances of the entities.
For example, "buyer John Doe issued Purchase Order number 123"
is an instance of a relationship.

The connection relationship may be further defined by
specifying the cardinality of the relationship. That is, the

3-3

30 UM 620341002
30 September 1990

specification of how many child entity instances may exist for
each parent instance. Within IDEFIX, the following
relationship cardinalities can be expressed:

1. Each parent entity instance may have zero, one or
more associated child entity instances.

2. Each parent entity instance must have at least one
or more associated child entity instances.

3. Each parent entity instance can have none or at most
one associated child instance.

4. Each parent entity instance is associated with some
exact number of child entity instances.

If an instance of the child entity is identified by its
association with the parent entity, then the relationship is
referred to as an "identifying relationship". For example, if
one or more tasks are associated with each project and tasks
are only uniquely identified within a project, then an
identifying relationship would exist between the entities
PROJECT and TASK. That is, the associated project must be
known in order to uniquely identify one task from all other
tasks. (Also see Foreign Keys in Section 3.7)

If every instance of the child entity can be uniquely
identified without knowing the associated instance of the
parent entity then the relationship is referred to as a "non-
identifying relationship". For example, although an existence-
dependency relationship may exist between the entities BUYER
and PURCHASE-ORDER, purchase orders may be uniquely identified
by a purchase nrder number without identifying the associated
buyer.

Assertions which affect multiple relationships may also be
defined. One type of assertion may specify a boolean
constraint between two or more relationships. For example, an
"exclusive OR" constraint states that for a given parent entity
instance if one type of child entity instance exists, then a
second type of child entity instance will not exist. However,
if both the parent and child entities refer to the same real
world thing, then a potential categorization relationship
exists (See Section 3.3).

Another type of constraint is a "path assertion" which
constraints the specific instances of parent and child entities
when two entities can be related either directly or indirectly
through two different sequences of relationships. For example,
the entity DEPARTMENT may have two child entities, EMPLOYEE and
PROJECT. If the entities EMPLOYEE and PROJECT have a common
child entity called PROJECT-ASSIGNMENT, then PROJECT-ASSIGNMENT
is indirectly related to DEPARTMENT via two different
relationship paths. A path assertion might state that

3-4

UK 620341002
30 September 1990

"employees may only be assigned to projects which belong to the

same department for which they work".

Connection Relationship Syntax

A specific connection relationship is depicted as a line
drawn between the parent entity and the child entity with a dot
at the child end of the line. The default child cardinality is
zero, one or many. A "P" (for positive) is placed beside the
dot to indicate a cardinality of one or more. A "Z" is placed
beside the dot to indicate a cardinality of zero or one. If
the cardinality is an exact number, a positive integer number
is placed beside the dot. See Figure 3-2.

A solid line depicts an identifying relationship between
the parent and child entities. See Fivure 3-3. If an
identifying relationship exists the child entity is always an
identifier-dependent entity, represented by a rounded corner
box, and the primary key attributes of the parent entity are
also inherited primary key attributes of the child entity.
(Also see Foreign Keys in Section 3.7).

The parent entity in an identifying relationship will be
identifier-independent unless the parent entity is also the
child entity in some other identifying relationship, in which
case both the parent and child entity would be identifier-
dependent. An entity may have any number of relationships with
other entities. However, if the entity is a child entity in
any identifying relationship, it is always shown as a
identifier-dependent entity with rounded corners, regardless of
its role in the other relationships.

zero, one or more

Ip one or more

I ~zero or one

n exactly n

Figure 3-2. Relationship Cardinality Syntax

3-5

UN 620341002
30 September 1990

onlt.AJ

key-aflfibult-A

Relationship Name i'- Parent Entity
from Parent to
Child

relationship- -0-7 Identifying
nam? Relationship

O"ittyUJ2

0o. ,. o 4. Child Entity

The Child Entity in an Identifying Relationship is always an
Identifier-Dependent Entity

The Parent Entity in an Identifying Relationship may be an
Identifier-Independent Entity (as shown) or an Identifier-
Dependent Entity depending upon other relationships.

Figure 3-3. Identifying Relationship Syntax

A dashed line depicts a non-identifying relationship
between the parent and child entities. See Figure 3-4. Both
parent and child entities will be identifier-independent
entities in a non-identifying relationship unless either or
both are child entities in some other relationship which is an
identifying relationship.

A relationship is given a name, expressed as a verb phrase
(a verb with optional adverbs and prepositions) placed beside
the relationship line. The name of each relationship between
the same two entities must be unique, but the relationship
names need not be unique within the model. The relationship

3-6

UM 620341002
30 September 1990

name is always expressed in the parent-to-child direction, such
that a sentence can be formed by combining the parent entity
name, relationship name, cardinality expression, and child
entity name. For example, the statement "A project consists of

Relationship Name 47- Parent Entity"
fromParent to
Child ,

relationship- -z... Non-Identifying
name Relationship

entity-0/2

key-aii]-A (FK) Child Entity

The Child Entity In a Non-Identifying Relationship will be an
Identifier-Dependent Entity unless the entity is also a Child
Entity in some Identifying Relationship.

The Parent Entity in a Non-Identifying Relationship may be
an Identifier-independent Entity (as shown) or an Identifier-
Dependent Entity depending upon other relationships.

Figure 3-4. Non-Identifying Relationship Syntax

one or more tasks" could be derived from a relationship showing
PROJECT as the parent entity, TASK as the child entity with a
"P" cardinality symbol, and "CONSISTS OF" as the relationship
name. Note that the relationship must still hold true when
stated from the reverse direction, although the child to-parent
relationship is not named explicitly. From the previous
example, it is inferred that "a task is part of exactly one
project".

Connection Relationship Rules

1. A specific connection relationship is always between
exactly two entities, a parent entity and a child entity.

3-7

UM 620341002
30 September 1990

2. An instance of a child entity must always be associated
with exactly one instance of the parent entity.

3. An instance of a parent entity may be associated with
zero, one or more instances of the child entity depending
on the specified cardinality.

4. The child entity in an identifying relationship is always
an identifier-dependent entity.

5. An entity may be associated with any number of other

entities as either a child or a parent.

3.3 Categorization Relationships

Categorization Relationship Semantics

Entities are used to represent the notion of "things about
which we need information". Since some real world things are
categories of other real world things, some entities must, in
some sense, be categories of other entities. For example, sup-
pose employees are something about which information is needed.
Although there is some information needed about all employees,
additional information may be needed about salaried employees
which is different from the additional information needed about
hourly employees. Therefore, the entities SALARIED-EMPLOYEES
and HOURLY-EMPLOYEES are categories of the entity EMPLOYEE. In
an IDEFIX model, they are related to one another through a
categorization relationship.

A "complete categorization relationship" is a relationship
between two or more entities, in which each instance of one
entity, referred to as the generic entity, is associated with
exactly one instance of one and only one of the other entities,
referred to as catgeory entities. Each instance of the generic
entity and its associated instance of one of the category
entities represents the same real-world thing and, therefore,
have the same unique identifier. From the previous example,
EMPLOYEE is the generic entity and SALARIED-EMPLOYEE and
HOURLY-EMPLOYEE are category entities.

Category entities for a generic entity are always mutually
exclusive. That is, an instance of the generic entity can cor-
respond to the instance of only one category entity. This im-
plies from the example that an employee cannot be both salaried
and hourly. The IDEFlX syntax does allow, however, for an
incomplete set of categories. If it is possible that an-
instance of the generic entity is not associated with any of
the category entities, then the relationship is defined as an
"incomplete categorization relationship".

An attribute value in the generic entity instance deter-
mines to which of the possible category entities it is related.
This attribute is called the "discriminator" of the categor-

3-8

UM 620341002
30 September 1990

ization relationship. In the previous example, the discrim-

inator might be named EMPLOYEE-TYPE.

Categorization Relationship Syntax

A categorization relationship is shown as a line extending
from the generic entity to a circle which is underlined. Sepa-
rate lines extend from the underlined circle to each of the
category entities. Cardinality is not specified for the
category entity since it is always zero or one. Category
entities are also always identifier-dependent. See Figure 3-5.
The generic entity is independent unless its identifier is
inherited through some other relationship.

If the circle has a double underline, it indicates that
the set of category entities is complete. A single line under
the circle indicates an incomplete set of categories.

The name of the generic entity attribute used as the dis-
criminator is written beside the circle. Although the rela-
tionship itself is not named explicitly, the generic entity to
category entity relationship can be read as "can be". For
example, an EMPLOYEE can be a SAL-RIED-EMPLOYEE. If the
complete set of categories is referenced, the relationship may
be read as "must be". For example, an EMPLOYEE must be a
SALARIED-EMPLOYEE or an HOURLY-EMPLOYEE. The relationship is

3-9

UM 620341002
30 September 1990

Generic
~~v4 /qEnity

Complete set

Category Entities

Incomplete set
of Jcategories

Category Entities will always be Identifier-Dependent Entities.

The Generic Entity may be an Identifier-Independent Entity
(as shown) or an Identifier-Dependent Entity depending
upon other relationships.

Figure 3-5. Categoriztion Relationship Syntax

3-10

UM 620341002
30 September 1990

read as "is a/an" from the reverse direction. For example, an
HOURLY-EMPLOYEE is an EMPLOYEE.

The-generic entity and each category entity must have the
same key attributes. However, role names may be used in the
category entities. (Also, see Foreign Keys in Section 3.7)

Categorization Relationship Rules

1. A category entity can have only one generic entity. That
is, it can only be a member of the set of categories for
one categorization relationship.

2. A category entity in one categorization relationship may
be a qeneric entity in another categorization
relationship.

3. An entity may have any number of categorization relation-
ships in which it is the generic entity. (For example,
FEMALE-EMPLOYEE and MALE-EMPLOYEE may be a second set of
categories for the generic entity EMPLOYEE.)

4. A category entity cannot be a child entity in an
identifying connection relationship.

5. The primary-key attribute(s) of a category entity must be
the same as the primary key attribute(s) of the generic
entity.

6. All instances of a category entity have the same
discriminator value and all instances of different
categories must have different discriminator values.

3.4 Non-Specific Relationships

Non-Specific Relationship Semantics

Both parent-child connection and categorization relation-
ships are considered to be "specific relationships" because
they defined precisely how instances of one entity relate to
instances of another entity. In a fully refined IDEFlX model,
all associations between entities must be expressed as specific
relationships. However, in the initial development of a model,
it is often helpful to identify "non-specific relationship" be-
tween two entities. These non-specific relationships are re-
fined in later development phases of the model. The procedure
for resolving non-specific relationships is discussed in Sec-
tion 4.4.1

A non-specific relationship, also referred to as a "many
to many relationship", is an association between two entities
in which each instance of the first entity is associated with
zero, one, or many instances of the second entity and each in-
stance of the second entity is associated with zero, one, or
many instances of the first entity. For example, if an employ-

3-11

UM 620341002
30 September 1990

ee can be assigned to many projects and a project can have many
employees assigned, then the connection between the entities
EMPLOYEE and PROJECT can be expressed as a non-specific rela-
tionship. This non-specific relationship can be replaced with
specific relationships later on in the model development by in-
troducing a third entity, such as PROJECT-ASSIGNMENT, which is
a common child entity in specific connection relationships with
the EMPLOYEE and PROJECT entities. The new relationships would
specify that an employee has zero, one, or more project
assignments and that a project has zero, one or more project
assignments. Each project assignment is for exactly one
employee and exactly one project. Entities introduced to
resolve non- specific relationship are sometimes called
"intersection" or "associative" entities.

A non-specific relationship-may be further defined by
specifying the cardinality from both directions of the
relationship. Any combination of cardinalities may be used to
specify a non-specific relationship. That is, for each in-
stance of the first entity, there are either:

o zero, one or more;

o one or more;

o zero or one; or

o an exact number

of instances of the second entity, and for each instance of the
second entity there are either:

o zero, one or more;

o one or more;

o zero or one, or

o an exact number
of instances of the first entity. Note that if a cardinality
of "exactly one" exists at either end of the relationship, the
relationship is specific rather than non-specific.

Non-Specific Relationship Syntax

A non-specific relationship is depicted as a line drawn
between the two associated entities with a dot at each end of
the line. See Figure 3-6. Cardinality may be expressed at
both ends of the relationship as shown in Figure 3-2. A "P"

3-12

UM 620341002
30 September 1990

RelationsNp of A to B -

gntityAllMtt

Relationship of B to A

IiiIAii Relationship of C to DI WatianshonalWlw

Relationship of D to C

Figure 3-6. Non-Specific Relationship Syntax

(for positive) placed beside a dot indicates that for each in-
stance of the entity at the other end of the relationship there
are one or more instances of the entity at the end with the
"P". A "Z" placed beside a dot indicates that for each in-
stance of the entity at the other end of the relationship there
are zero or one instances of the entity at the end with the
"Z". In a similar fashion, a positive integer number or mini-
mum and maximum positive integer range may be placed beside a
dot to specify an exact cardinality. The default cardinality
is zero, one, or more.

A non-specific relationship is named in both directions.
The relationship names are expressed as a verb phrase (a verb
with optional adverbs and prepositions) placed beside the

3-13

UM 620341002
30 September 1990

relationship line and separated by a slash, "/". The order of
the relationship names depends on the relativp position of the
entities. The first name expresses the relationship from ei-
ther the left entity to the right entity, if the entities are
arranged horizontally, or the top entity to the bottom entity,
if they are arranged vertically. The second name expresses the
relationship from the other direction, that is either the right
entity to the left entity or the bottom entity to the top enti-
ty again depending on the orientation. The relationship is la-
beled such that sentences can be formed by combining the entity
names with the relationship names. For example, the statements
"A project has zero, one, or more employees" and "An employee
is assigned zero, one, cr more projects" can be derived from a
non-specific relationship labeled "has/is assigned" between the
entities PROJECT and EMPLOYEE. (The sequence assumes the enti-
ty PROJECT appears above or to the left of the entity
EMPLOYEE.)

Non-Specific Relationship Rules

1. A non-specific relationship is always between exactly two
entities.

2. An instance of either entity may be associated with zero,
one or more instances of the other entity depending on the
specified cardinality.

3. A non-specific relationship must be replaced by specific
relationships in order to fully develop a model.

3.5 Attributes

Attribute Semantics

An "attribute" represents a type of characteristic or
property associated with a set of real or abstract things
(people, objects, places, events, states, ideas, pairs of
things, etc.). An "attribute instance" is a specific
characteristic of an individual member of the set. An at-
tribute instance is defined by both the type of characteristic
and its value, referred to as an "attribute value". Within an
IDEFIX model, attributes are associated with specific entities.
An instance of an entity, then, must have a single specific
value for each associated attribute. For example, EMPLOYEE-
NAME and BIRTH-DATE may be attributes associated with the enti-
ty EMPLOYEE. An instance of the entity EMPLOYEE could have the
attribute values of "Jenny Lynne" and "February 27, 1953".

An entity must have an attribute or combination of at-
tributes whose values uniquely identify every instance of the
entity. These attributes form the "primary-key" of the entity.
(See Section 3.6). For example, the attribute EMPLOYEE-NUMBER
might serve as the primary key for the entity EMPLOYEE, while
the attributes EMPLOYEE-NAME and BIRTH-DATE would be other at-
tributes.

3-14

UM 620341002
30 September 1990

Within an IDEFiX model, every attribute is owned by only
one entity and every instance of the entity must have a value
for every attribute associated with the entity. That is, the
attribute must be applicable to every member of the set of
things represented by the entity. The attribute MONTHLY-
SALARY, for example, would apply to some instances of the enti-
ty EMPLOYEE but probably not all. Therefore, a separate but
related entity called SALARIED-EMPLOYEE might be identified in
order to establish ownership for the attribute MONTHLY-SALARY.
Since an actual employee who was salaried would represent an
instance of both the EMPLOYEE and SALARIED-EMPLOYEE entities,
attributes common to all employees, such as EMPLOYEE-NAME and
BIRTH-DATE, need not be an attribute of the SALARIED-EMPLOYEE
entity.

In addition to attributes "owned" by the entity, that is a
basic characteristic of the things the entity represents, an
attribute may be "inherited" by the entity through a specific
connection or categorization relationship in which it is a
child or category entity. (See Section 3.7). For example, if
every employee is assigned to a department, then the attribute
DEPARTMENT-NUMBER could be an attribute of EMPLOYEE which is
inherited through the relationship of the entity EMPLOYEE to
the entity DEPARTMENT. The entity DEPARTMENT would be the own-
er of the attribute DEPARTMENT-NUMBER. Only primary key at-
tributes may be inherited through a relationship. The at-
tribute DEPARTMENT-NAME, for example, would not be an inherited
attribute of EMPLOYEE if it was not part of the primary, key for
the entity DEPARTMENT.

Attribute Syntax

Each attribute is identified by a unique name expressed as
a noun phrase (a noun with optional adjectives and preposi-
tions) that describes the characteristic represented by the
attribute. The noun phrase is singular, not plural.
Abbreviations and acronyms are permitted, however, the at-
tribute name must be meaningful and consistent throughout the
model. A formal definition of the attribute and a list of syn-
onyms or aliases must be defined in the model of glossary.

Attributes are shown by listing their names, one line per
attribute, inside the associated entity box. Attributes which
define the primary key are placed at the top of the list and
separated from the other attributes by a horizontal line. See
Figure 3-7.

Attribute Rules

1. Each attribute must have a unique name and the same mean-
ing must always apply to the same name. Furthermore, the
same meaning cannot apply to different names unless the
names are aliases.

3-15

UM 620341002
30 September 1990

2. An entity can own any number of attributes. Every at-
tribute is owned by exactly one entity (referred to as the
Single-Owner Rule).

3. An entity can have any number of inherited attributes.
However, an inherited attribute must be part of the prima-
ry key of a related parent entity or generic entity.

4. Every instance of an entity must have a value for every
attribute (referred to as the No-Null Rule).

5. No instance of an entity can have more than one value for
an attribute associated with the entity (referred to as
the No-Repeat Rule).

entity-name/entity-number
attribute-name
[attribute-name] Primary-Key

__JAttributes

[attribute-name]
[attribute-name]
[attribute-name]

EXAMPLE

EMPLOYEE/32

EMPLOYEE-NO

EMPLOYEE-NAME
BIRTH-DATE
SEX

Figure 3-7. Attribute and Primary Key Syntax

3-16

UM 620341002
30 September 1990

3.6 Primary and Alternate Keys

Primary and Alternate Key Semantics

A candidate key of an entity is one or more attributes,
whose value uniquely identifies every instance of the entity.
For example, the attribute PURCHASE-ORDER-NUMBER may uniquely
identify an instance of the entity PURCHASE-ORDER. A combina-
tion of the attributes ACCOUNT-NUMBER and CHECK-NUMBER may
uniquely identify an instance of the entity CHECK.

Every entity must have at least one candidate key. In
some cases, an entity may have more than one attribute or group
of attributes which uniquely identify instances of the entity.
For example, the attributes EMPLOYEE-NUMBER and SOCIAL-
SECURITY-NUMBER may both uniquely identify an instance of the
entity EMPLOYEE. If more than one candidate key exists, then
one candidate key is designated as the "primary key" and the
other candidate keys are designated as "alternate keys". If
only one candidate key exists, then it is, of course, the
primary key.

Primary and Alternate Key Syntax

Attributes which define the primary key are placed at the
top of the attribute list within an entity box and separated
from the other attributes by a horizontal line. See Figure 3-
7.

Each alternate key is assigned a unique integer number and
is shown by placing the note "AK" plus the alternate key number
in parentheses, e.g. "(AKI)", to the right of each of the at-
tributes in the key. (See Figure 3-8). An individual at-
tribute may be identified as part of more than one alternate
key. A primary key attribute may also serve as part of an al-
ternate key.

Primary and Alternate Key Rules

1. Every entity must have a primary key.

2. Any entity may have any number of alternate keys.

3. A primary or alternate key may consist of a single at-
tribute or combination of attributes.

4. An individual attribute may be part of more than one key,
either primary or alternate.

5. Attributes which form primary and alternate keys of an en-
tity may be either owned by the entity or inherited
through a relationship. (See Foreign Keys in Section
3.7).

3-17

UM 620341002
30 September 1990

6. Primary and alternate keys must contain only those at-
tributes that contribute to unique identification (i.e.,
if any attribute were not included as part of the key then
every instance of the entity could not be uniquely identi-
fied, referred to as the Smallest-Key Rule).

7. If the primary key is composed of more than one attribute,
the value of every non-key attribute must be functionally
dependent upon the entire primary key, i.e., if the prima-
ry key is known, the value of each non-key attribute is
known and no non-key attribute value can be determined by
just part of the primary key (referred to as the Full-
Functional-Dependency Rule).

8. Every non-key attribute must be only functionally depen-
dent upon the primary and alternate keys, i.e., no non-key
attribute's value can be determined by another non-key at-
tribute value (referred to as the No-Transitive-Dependency
Rule).

attribute-name (AKn [AKIn] ...)

Where n,m,etc.. uniquely identify each Alternate Key that includes

the associated attribute and where an Alternate Key consists of all

the attributes with the same identifier.

EXAMPLE

EMPLOYEE-NO 4 Primary Key

SOCIAL-SECURITY-NO (AK1) Alternate Key #1
NAME (AK2) (A2)Alternate Key #2BIRTH-DATE (1AK2)

Figure 3-8. Alternate Key Syntax

3-18

UM 620341002
30 September 1990

3.7 Foreign Keys

Foreign Key Semantics

If a specific connection or categorization relationship
exists between two entities, then the attributes which form the
primary key of the parent or generic entity are inherited as
attributes of the child or category entity. These inherited
attributes are referred to as "Foreign Keys". For example, if
a connection relationship exists between the entity PROJECT as
a parent and the entity TASK as a child, then the primary key
attributes of PROJECT would be inherited attributes of the
entity TASK. For example, if the attribute PROJECT-ID were the
primary key of PROJECT, then PROJECT-ID would also be an inher-
ited attribute or Foreign Key of TASK.

An inherited attribute may be used as either a portion or
total primary key, alternate key, or non-key attribute within
an entity. If all the primary key attributes of a parent enti-
ty are inherited as part of the primary key of the child
entity, then the relationship through which the attributes were
inherited is an "identifying relationship". If any of the in-
herited attributes are not part of the primary key, then the
relationship is a "non-identifying relationship. See Section
3.2. For example, if tasks were only uniquely numbered within
a project, then the inherited attribute PROJECT-ID would be
combined with the owned attribute TASK-NUMBER to define the
primary key of TASK. The entity PROJECT would have an
identifying relationship with the entity TASK. If on the other
hand, the attribute TASK-NUMBER is always unique, even between
projects, then the inherited attribute PROJECT-ID would be a
non-key attribute of the entity TASK. In this case, the entity
PROJECT would have a non-identifying relationship with the
entity TASK.

In a categorization relationship, both the generic entity
and the category entities represent the same real-world thing.
Therefore, the primary key for all category entities is
inherited through the categorization relationship from the pri-
mary key of the generic entity. For example, if SALARIED-
EMPLOYEE and HOURLY-EMPLOYEE are category entities and EMPLOYEE
is the generic entity, then if the attribute EMPLOYEE-NUMBER is
the primary key for the entity EMPLOYEE, it would also be the
primary key for the entities SALARIED-EMPLOYEE and HOURLY-
EMPLOYEE.

In some cases, a child entity may have multiple relation-
ships to the same parent entity. The primary key of the parent
entity would appear as inherited attributes in the child entity
for each relationship. For a given instance of the child enti-
ty, the value of the inherited attributes may be different for
each relationship, i.e. two different instances of the parent
entity may be referenced. A bill of material structure, for
example, can be represented by two entities PART and ASSEMBLE-

3-19

UM 620341002
30 September 1990

STRUCTURE. The entity PART has a dual relationship as a parent
entity to the entity ASSEMBLE-STRUCTURE. The same part some-
times acts a component from which assemblies are made, i.e., a
part may be a component in one or more assemblies, and some-
times acts as an assembly into which components are assembled,
i.e., a part may be an assembly for one or more component
parts. If the primary key for the entity PART is PART-NO, then
PART-NO would appear twice in the entity ASSEMBLE-STRUCTURE as
an inherited attribute.

When a single attribute is inherited more than once, a
"role name" must be assigned to each occurrence. From the pre-
vious example, role names of COMPONENT-NO and ASSEMBLE-NO could
be assigned to distinguish between the two inherited PART-NO
attributes. Although not required, role names may also be used
with single occurrences of inherited attributes to more
precisely convey its meaning within the context of the child
entity.

Foreign Key Syntax

A foreign key is shown by placing the names of the
inherited attributes inside the entity box and by following
each with the letters "FK" in parentheses, i.e., "(FK)". See
Figure 3-9. If the inherited attribute belongs to the primary
key of the child entity, it is placed above the horizontal line
and the entity is drawn with rounded corners to indicate that
the identifier (primary key) of entity is dependent upon an at-
tribute inherited through a relationship. If the inherited at-
tribute does not belong to the primary key of the child entity,
it is drawn below the line. Inherited attributes may also be
part of an alternate key.

Role names, like attribute names, are noun phrases. A
role name is followed by the name of the inherited attribute,
separated by a period. See Figure 3-10.

3-20

UM 620341002
30 September 1990

Inherited Non-Key Attribute Example

EMPLOYEE/12
EMPLOYEE-NO

Foreign _ DEPT-NO (FK)
Key

Inherited Primary Key Attribute Example

PURCHASE-ORDER-ITEM/2
PURCHASE-ORDER-NO (FK]

Foreign ITEM-NO
Key

Figure 3-9. Foreign Key Syntax Examples

Foreign Key Rules

1. Every entity must contain a separate foreign key for each
specific connection or categorization relationship in
which it is the child or category entity.

2. The primary key of a generic entity must be inherited as
the primary key for each category entity.

3. An entity must not contain two entire foreign keys that
identify the same instance of the same parent or generic
entity for every instance of the child or category entity
(otherwise, only one relationship exists and only one for-
eign key is needed).

3-21

UM 620341002
30 September 1990

ROLE NAME SYNTAX

roi-name. aftrbute-narnj (FK)

EXAMPLE

PART/5

PART-NO

IS COMPONENT IN i j IS ASSEMBLED FROM

Role Name ASEBES0CUEI Inherited Attnbuts

i"COMP-NO.PART-NO-' FK i
tASSY'NO.PART-NO(FK)

Figure 3-10. Role Name Syntax

4. Every inherited attribute of a child or category entity
must represent an attribute in the primary key of a relat-
ed parent or generic entity. Conversely, every primary
key attribute of a parent or generic entity must be an in-
herited attribute in the related child or category entity.

5. Each role name assigned to an inherited attribute must be
unique and the same meaning must always apply to the same
name. Furthermore, the same meaning cannot apply to dif-
ferent names unless the names are aliases.

6. A single inherited attribute may be part of more than one
foreign key provided that the attribute always has the
same value for both foreign keys in any given instance of
the entity.

3-22

UM 620341002
30 September 1990

SECTION 4

MODELING PROCEDURES

4.1 Phase Zero - Project Initiation

The IDEFIX data model must be described and defined in
terms of both its limitations and its ambitions. The modeler
is one of the primary influences in the development of the
scope of the model. Together, the modeler and the project man-
ager unfold the plan for reaching the objectives of Phase Zero.
These objectives include:

o Project definition - a general statement of what has
to be done, why, and how it will get done.

o Source material - a plan for the acquisition of source
material, including indexing and filing.

o Author conventions - a fundamental declaration of the
conventions (optional methods) by which the author
chooses to make and manage the model.

The products of these objectives, coupled with other de-
scriptive and explanatory information, become the products of
the Phase Zero effort.

4.1.1 Establish Modeling Objectives

The modeling objective is comprised of two statements:

o Statement of purpose - a statement defining concerns
of the model, i.e., its contextual limits.

o Statement of scope - a statement expressing the
functional boundaries of the model.

One of the primary concerns, which will be answered as a
result of the establishment of the modeling objective, is the
concern over the time-frame reference for the model. Will it
be a model of the current activities (i.e., an AS-IS model) or
will it be a model of what is intended after future changes are
made (i.e., a TO-BE model)? Formal description of a problem
domain for an IDEFIX modeling project may include the review,
construction, modification, and/or elaboration of one or more
IDEFO (activity) models. For this reason, both the modeler and
the project manager must be versed to some degree in the
authorship and use of IDEFO models. Typically, an IDEFO model
already exists, which can serve as a basis for the problem do-
main.

Although the intent behind data modeling is to establish
an unbiased view of the underlying data infrastructure which
supports the entire enterprise, it is important for each model
to have an established scope which helps identify the spe-

4-1

UM 620341002
30 September 1990

cific data of interest. This scope may be related to a type of
user (e.g. a buyer or design engineer) a business function
(e.g. engineering drawing release or shop order scheduling) or
a type of data (e.g. geometric product definition data or
financial data). The statement of scope together with the
statement of purpose defines the modeling objective. The
following is an example of a modeling objective:

"The purpose of this model is to define the current (AS-
IS) data used by a manufacturing cell supervisor to
manufacture and test composite aircraft parts."

Although the scope may be limited to a single type of
user, other users must be involved in the modeling process to
ensure development of an unbiased view.

4.1.2 Develop Modeling Plan

The modeling plan outlines the tasks to be accomplished
and the sequence in which they should be accomplished. These
are laid out in conformance with the overall tasks of the
modeling effort:

o Project planning
o Data collection
o Entity definition
o Relationship definition
o Key attribute definition
o Nonkey attribute population
o Model validation
o Acceptance review

The modeling plan serves as a basis to assign tasks,
schedule milestones, and estimate cost for the modeling effort.

4.1.3 Organize Team

The value of a model is measured not against some absolute
norm, but in terms of its acceptability to experts and laymen
within the community for which it is built. This is accom-
plished through two mechanisms. First, a constant review by
experts of the evolving model provides a measure of validity of
that model within the particular environment of those experts.
Second, a periodic review of the model by a committee of ex-
perts and laymen provides for a "corporate" consensus to the
model. During the modeling process, it is not uncommon to dis-
cover inconsistencies in the way various departments do busi-
ness. These inconsistencies must be resolved in order to pro-
duce data models that represent the enterprise in an acceptable
and integrated fashion.

To the extent possible, the builders of a model should be
held responsible for what the model says. Nothing is assumed
to have been left to the model reader's imagination. Nor is

4-2

UM 620341002
30 September 1990

the reader at liberty to draw conclusions outside the scope of
the statement of the model. This forces a modeler to carefully
consider each piece of data added to the model, so that no
imagination is required in the interpretation of the model.

The team organization is constructed to support these ba-
sic principles and to provide required project controls. The
IDEFIX team organization has five primary roles:

o Project Manager
o Modeler
o Sources of Information
o Subject Matter Experts
o Acceptance Review Committee

The purpose of a role assignment, irrespective of the
assignee, is the determination of responsibility. Each of
these roles is defined on the pages that follow.

One person may serve in more than one capacity on the
team, but it is wise to remember that if there are insufficient
points of view taken into account when building the model, the
model may represent a very narrow perspective. It may end up
only partially serving to reach the objectives of the modeling
project.

In the cases of the project manager and the modeler, there
must be a lead, or principal, individual who fulfills the role.
Although it is the modeler's ultimate goal to have the model
approved by the review committee, the modeler reports to the
project manager, not the review committee. In this way the
otherwise conflicting interests of the modeler, review commit-
tee, and project manager are disentangled. The project manager
is always placed in a position of control, but the various
technical discussions-and approvals are automatically delegated
to the qualified participants. Figure 4-1 illustrates the
functional project organization, with the project manager at
the nucleus of all project activity.

4-3

UM 620341002
30 September 1990

Expert

Figure 4-1. Team Organization

4-4

UM 620341002
30 September 1990

Project Manager Role

The project manager is the person identified as having
administrative control over the modeling project. The pro3ect
manager performs four essential functions in the modeling
effort.

First of all, the project manager selects the modeler. As
a major part of this function, the project manager and the mod-
eler must reach an agreement on the ground rules to be
followed in the modeling effort. These include the use of this
methodology, the extent of control the project manager expects
to exercise over the modeler, and the scope and orientation of
the model to be developed.

The second function performed by the project manager is to
identify the sources of information on which the modeler will
draw to build the model. These sources may either be people
particularly knowledgeable in some aspect of the business area,
or documents that record, instigate, or report aspects of that
business area. From a modeling standpoint, personnel who can
interpret and explain the information they deal with are more
desirable. However, documents which record that information
are usually less expensive to obtain. The project manager must
be in a position to provide these sources to the modelers.
Sources are initially identified in modeling Phase Zero, but
the list must be reviewed and revised as the effort progresses,
since the information required will tend to change as the model
grows.

Next, the project manager selects experts on whose knowl-
edge and understanding the modeler will draw for validation of
the evolving model. Validation, as discussed below under Ex-
pert, means concurrence that the model acceptably reflects the
subject being modeled. The experts will be given portions of
the model and asked to review and comment based on their
particular knowledge. Clearly, more of an expert's time will
be absorbed in the modeling effort than the time we would set
aside for a source of basic information. The initial list of
experts is established during Phase Zero, but will be reviewed
and revised throughout the modeling effort as the need arises.

Finally, the project manager forms and convenes the accep-
tance review committee. This committee, under the chairmanship
of the project manager, periodically meets to consider issues
of substance requiring arbitration and to review portions of
the model for formal acceptance. The project manager sits on
the committee as its non-voting chairman, thereby providing the
needed link between the modeler and the committee. Although
the modeler is not a member of the committee, the project
manager will frequently invite the modeler to attend a commit-
tee meeting to provide background information or to explain
difficult technical points. The first meeting of the committee
is held during Phase Zero, and thereafter at the discretion of
the project manager.

4-5

UM 620341002
30 September 1990

Modeler Role

The modeler records the model on the basis of source mate-
rial he is able to gather. It is the modeler's function to ap-
ply modeling techniques to the problem posed by the project
manager. The modeler performs four primary functions: source
data collection, education and training, model recording, and
model control. The modeler is the central clearinghouse for
both modeling methodology information and information about the
model itself.

Before the modeler's primary functions begin, the modeler
and the project manager study and establish the scope of the
modeling effort. The modeler then outlines a project plan,
i.e., the tasks required to reach the stated objectives. The
project manager provides the modeler with a list of information
sources and a list of experts on whom the modeler may rely.
The modeler must ensure that the necessary lines of
communication are established with all participants.

Source data are collected by the modeler from the various
sources identified by the project manager. The nature of these
data will depend largely on the modeling phase being exercised.
Both people and documents will serve as sources of information
throughout the modeling effort. The modeler must be
particularly aware that each piece of source data represents a
particular view of the data in the enterprise. Each producer
and each user of data has a distinct view of that data. The
modeler is striving to see, through the eyes of the sources,
the underlying meaning and structure of the data. Each source
provides a perspective, a view of the data sought. By combin-
ing these views, by comparing and contrasting the various per-
spectives, the modeler develops an image of the underlying
reality. Each document may be seen as a microcosmic
implementation of a system, meeting the rules of the underlying
data model. The modeler attempts to capture all of these rules
and represent them in a way that can be read, understood, and
agreed upon by experts and informed laymen.

The modeler's second function is to provide assistance
with the modeling technique to those who may require it. This
will fall generally into three categories: general orientation
for review committee members, sources, and some experts; model
readership skills for some sources and experts; and modeling
skills for some experts and modelers, as required.

The third function is recording the model. The modeler
records the data model by means of textual and graphic descrip-
tions. Standard forms for capturing and displaying model
information are presented in Section 5.3.

The modeler also controls the development of the model.
Files of derived source information are maintained to provide
appropriate backup for decisions made by the modeler, and to

4-6

UM 620341002
30 September 1990

allow a record of participation. This record of participation
provides the modeler with an indication of the degree to which
the anticipated scope is being covered. By knowing who has
provided information in what areas, and the quality of those
interactions, the modeler can estimate the degree to which cur-
rent modeling efforts have been effective in meeting the origi-
nal goals.

The modeler is also responsible for periodically organiz-
ing the content of the model into some number of reader kits
for distribution to reviewers. A reader kit is a collection of
information about the model, organized to facilitate its review
and the collection of comments from the information experts.
Kits are discussed further in Section 5.2.

Source Roles

Source information for an IDEFIX model comes from every
quarter within the enterprise. These sources are often people
who have a particular knowledge of the management or operation
of some business process and whose contact with the model may
be limited to a few short minutes of intervic*' time. Yet these
sources form the heart of the modeling process. Their
contribution is modeled, and their perception provides the mod-
eler with the needed insight to construct a valid, useful
model. Sources must be sought out and used to best advantage
wherever they may be found.

The project manager identifies sources of information that
may be effective, based on the modeler's statement of need. As
the modeling effort progresses, needs change and the list of
sources must be revised. Whereas the modeler must be careful
to account for the information provided by each source, both
the modeler and source should be aware that any particular con-
tribution is necessarily biased. Each source perceives the
world a little differently, and it is the modeler's
responsibility to sort out these varying views. This is espe-
cially true of source documents.

Documents record the state of a minute portion of the en-
terprise at some point in time. However, the information on a
document is arranged for the convenience of its users, and sel-
dom directly reflects the underlying data structure. Redundan-
cy of data is the most common example of this, but the occur-
rence of serendipitous data on a document is also a source of
frequent and frustrating confusion. Documents are valuable
sources of information for the model, but they require a great
-deal of interpretation, understanding, and corroboration to be
used effectively.

If the data model is being developed to either integrate
or replace existing databases, then the existing database de-
signs should be referenced as a source document. However, like
other documents, existing database designs do not generally re-
flect the underlying data structure and require interpretation.

4-7

UM 620341002
30 September 1990

People used as sources, on the other hand, can often ex-
tend themselves beyond their direct use of information to tell
the modeler how that information is derived, interpreted, or
used. By asking appropriate questions, the modeler can use
this information to assist in understanding how the percep-
tion of one source may relate to that of another source.

Expert Role

An expert is a person appointed by the project manager who
has a particular knowledge of some aspect of the manufacturing
area being modeled, and whose expertise will allow valuable
critical comments of the progressing model. The impact that
appropriate experts can have on the modeling effort cannot be
overemphasized. Both the modeler and the project manager
should seriously consider the selection of each expert.

Experts are called on to critically review portions of the
evolving model. This is accomplished through the exercise of
some number of validation cycles, and by the use of reader
kits. These kits provide the expert with a related collection
of information presented to tell a story. In this fashion, the
expert is provided the information in an easily digestible form
and is challenged to fill in the blanks or complete the story.
Although the kit is largely based on modeler interpretation of
information from informed sources, the comments of experts may
also be expected to provide high quality source material for
the refinement of the model. The particular expertise of these
people makes them uniquely qualified to assist the modeler in
constructing and refining the model. The modeler must take ev-
ery opportunity to solicit such input, and this is why the kits
of information must present the expert with concise, clear
problems to solve relative to the modeling effort.

The primary job of the expert is to validate the model.
Expert validation is the principal means of achieving an in-
formed consensus of experts. That is, a valid model is one
agreed to by experts informed about the model. Note that it is
not necessary for a model to be "right" for it to be valid. If
the majority of experts in the field agree that the model
appropriately and completely represents the area of concern,
then the model is considered to be valid. Dissenting opinions
are always noted, and it is assumed by the discipline that mod-
els are invalid until proved otherwise. This is why expert
participation is so vital to the modeling effort. When the
modeler first constructs a portion of the model, he is saying,
"I have reviewed the facts and concluded the following..."
When that portion is submitted to experts for review, he asks,
"Am I right?" Expert comments are then taken into account in
revising that portion of the model with which the experts do
not agree, always bearing in mind that a consensus is being
sought.

4-8

UM 620341002
30 September 1990

Experts, more than any other nonmodeling participants, re-
quire training to be effective. In fact, one of the modeler's
responsibilities is to ensure that experts have an adequate un-
derstanding of the modeling methodology and process.
Principally, experts require good model readership skills, but
it may be helpful to train an expert in some of the rudiments
of model authorship. By providing experts with a basic under-
standing of modeling, the project is assured of useful input
from those experts. Further, the stepwise, incremental nature
of the modeling process presents experts with the modeling
methodology in small doses. This tends to enhance the expert's
ability to understand and contribute to the modeling effort.

Acceptance Review Committee Role

The acceptance review committee is formed of experts and
informed laymen in the area addressed by the modeling effort.
The project manager forms the committee and sits as its
chairman. It is the function of the review committee to
provide guidance and arbitration in the modeling effort, and to
pass final judgement over the ultimate product of the effort:
an IDEFlX data model. Since this model is one part of a
complex series of events to determine and implement systemat-
ic improvements in the productivity of the enterprise, it is
important that the committee include ample representation from
providers, processors, and end users of the data represented.
Very often, this will mean that policy planners and data pro-
cessing experts will be included on the committee. These people
are primarily concerned with eventual uses to which the model
will be put. Further, it may be advantageous to include ex-
perts from business areas outside of, but related to, the area
under study. These experts often can contribute valuable in-
sight into how the data model will affect, or be affected by,
ongoing work in other areas.

It is not uncommon for those who serve as experts to also
serve as members of the review committee. No conflict of
interest, in fact, should be anticipated. An expert is often
only exposed to restricted portions of the model at various in-
termediate stages. The review committee, by contrast, must pass
judgment on the entire model. It is much less common for indi-
viduals who serve in the role of source to also sit on the com-
mittee, as their knowledge is usually restricted enough in cov-
erage to exclude them from practical contribution to the
committee. Finally, it is ill-advised for modelers to sit on
the committee, as a severe conflict of interest is clearly evi-
dent. Further, the role of modeler is to record the model
without bidS, dnd the role of the committee is to ensure that
the model in fact represents their particular enterprise.

The end product of this segment of the project definition
is the documentation of specific assignments made by the
project manager to fulfill each of the functional role require-
ments of the modeling technique.

4-9

UM 620341002
30 September 1990

4.1.4 Collect Source Material

One of the first problems confronting the modeler is to
determine of what sort of material needs to be gathered, and
from what sources is should be gathered. Not infrequently, the
scope and context of the IDEFIX model will be determined based
on an analysis of an IDEFO function model. Once the analysis
of the functions and pipelines between functions is completed,
target functions within the enterprise represented by the func-
tion model can be identified. A target function node is one
that represents a concentration of information in use, which is
representative of the problem domain.

Once the target functional areas have been identified and
the primary information categories of interest selected, indi-
viduals within functions can be selected to participate in the
data gathering process. This data gathering can be accom-
plished in several ways, including interviews with knowledge-
able individuals; observation of activities, evaluation of
documents, policies and procedures, and application specific
information models, etc. This requires translation of the tar-
get function nodes into their equivalent, or contributing, mod-
eling participants. Once the groups participating in a target
function have been identified, the project manager can proceed
to identify individuals or specific observable areas that can
be used as sources of material for the model.

Source material may take a variety of forms and may be
fairly widespread throughout an organization. Source materials
may include:

o Interview results

o Observation results

o Policies and procedures

o Outputs of existing systems (reports and screens)

o Inputs to existing systems (data entry forms and
screens)

o Database/file specifications for existing systems

Regardless of the method used, the objective of the model-
er at this point is to establish a plan for the collection of
representative documentation reflecting the information perti-
nent to the purpose and viewpoint of the model. Once
collected, each piece of this documentation should be marked in
such a way that could be traced to its source. This documenta-
tion, along with the added documentation that is discovered
through the course of the modeling, will constantly be referred
to in the various phases of model development. The modeler

4-10

UM 620341002
30 September 1990

will study and search for source material that lends credibili-
ty to the basic structural characteristics of the model and to
the meaning of the data represented.

As discussed in Section 2, the objective of data modeling
is to define a single consistent enterprise view of the data
resource which is referred to as the Conceptual Schema in the
ANSI/SPARC architecture. Source documents, for the most part,
represent either External Schema or Internal Schema which must
map to the Conceptual Schema but are biased toward their
particular use. User reports, for example, are an External
Schema view of the data which might serve as source documenta-
tion. File descriptions and database designs represent Inter-
nal Schema views of data and may also be used as source
documentation. Although the data structure will be greatly
simplified through the modeling process, the resulting data
model must be mappable back to the External and Internal Schema
from which it was developed.

A sound data collection plan is of paramount importance to
accomplish the objective successfully. This data collection
plan must reflect what kind of data is of importance, where
that data is available, and who will supply it.

4.1.5 Adopt Author Conventions

Author conventions are those latitudes granted to the mod-
eler (author) to assist in the development of the model, its
review kits, and other presentations. Their purpose is
specifically for the enhancement of the presentation of the ma-
terial. They may be used anywhere to facilitate a better
understanding and appreciation of any portion of the model.
For example, a standard naming convention may be adopted for
entity and attribute names.

Author conventions may take on various forms and appear in
various places. But the most important aspect of all of this
is what author conventions are not.

o Author conventions are not formal extensions of the
technique

o Author conventions are not violations of the technique

Author conventions are developed to serve specific needs.
Each convention must be documented as it is developed and in-
cluded in the Phase Zero documentation that is distributed for
review.

4.2 Phase One - Entity Definition

The objective of Phase One is to identify and define the
entities that fall within the problem domain being modeled.
The first step in this process is the identification of enti-
ties.

4-11

UM 620341002
30 September 1990

4.2.1 Identify Entities

An "entity" within the context of an IDEFIX Model repre-
sents a set of "things" which have data associated with them.
Where, a "thing" may be an individual, a physical substance, an
event, a state, a deed, an idea, a notion, a point, a place,
etc. Members of the set represented by the entity have a
common set of attributes or characteristics. For example, all
members of the set of employees have an employee number, name,
and other common attributes. An individual member of an entity
set is referred to as an instance of the entity. For example,
the employee named Jerry with employee number 789 is an
instance of the entity EMPLOYEE. Entities are always named
with by a singular, generic noun and must be an attribute (key)
which will uniquely identify each of its instances.

Most of the entities can be directly or indirectly
identified from the source material collected during Phase
Zero. If the modeling effort is expanding or refining a
previous data model, appropriate entities should be selected
from the prior model. For entities not previously defined, the
modeler must first identify within the list of source material
names those things which represent potentially viable entities.
One way this can be simplified is to identify the occurrences
of all nouns in the list. For example, terms such as part,
vehicle, machine, drawing, etc., would at this stage be
considered potentially viable as entities. Another method is to
identify those terms ending with the use of the word "code" or
"number," for example, part number, purchase order number,
routing number, etc. The phrase or word preceding the word
"code" or "number" could also be considered at this stage as a
potentially viable entity. For the remainder of the items on
this list, the modeler must ask whether the word represents an
object or thing about which information is known, or is
information about an object or thing. Those items that fall
into the category of being objects about which information is
known may also be viable entities.

Entities result from a synthesis of basic entity
instances, which become members of the entity. This means that
some number of entity instances, all of whose characteristics
are the same type, are represented as an entity. An example of
this concept is shown in Figure 4-2. Each instance of an entity
is a member of the entity, each with the same kind of
identifying information.

In order to help separate entities from non-entities, the
modeler should ask the following questions about each candidate
entity:

o Can it be described? (Does it have qualities?)

4-12

UM 620341002
30 September 1990

ENTITY INSTANCES

Je Helen Bob

ENTrY: EMPLOYEE
NAME:
EMPLOYEE #:
AGE:
JOB TITLE:

Figure 4-2. Synthesizing an Entity

o Are there several instances of these?

o Can one instance be separated/identified from another?

o Does it refer to or describe something? (A "yes"
answer implies an attribute rather than an entity).

At the end of this analysis, the modeler has defined the
initial entity pool. This pool contains all of the names of
entities within the context of the model known at this point.
As the modeler is building the entity pool, he assigns a dis-
crete identification number to each entry and records a refer-
ence to its source. In this way, traceability of the'
information is maintained. The integrity of the pool remains
intact, and the management of the pool is relatively easy. A
sample of an entity pool is shown in Figure 4-3.

4-13

UM 620341002
30 September 1990

In all likelihood, not all names on the list will remain
as entities by the end of Phase Four. In addition, a number of
new entities will be added to this list and become a part of
the information model as the modeling progresses and the under-
standing of the information improves.

Entity names discovered in phases further downstream must
be added to the entity pool and assigned a unique identifica-
tion number. One of the products of the Phase One effort is
the entity pool. It must be up to date to cemain viable.

4.2.2. Define Entities

The next product to emerge out of the Phase One efforts is
the beginning of the entity glossary. During Phase One, the
glossary is merely a collection of the entity definitions.

The components of an entity definition include:

1. ENTITY NAME

Entity name is the unique name by which the entity
will be recognized in the IDEFIX model. It should be
descriptive in nature. Although abbreviations and
acronyms are permitted, the entity name must be
meaningful.

4-14

UM 620341002
30 September 1990

Source Material
Number Entity Name Log Number

E-1 Backorder 2
E-2 Bill of Lading 2
E-3 Carrier 2
E-4 Clock Card 3
E-5 Commodity 2
E-6 Contractor 4
E-7 Delivery 2
E-8 Department 2
E-9 Deviation Waiver 6
E-10 Deviation Waiver Request 6
E-11 Division 4
E-12 Employee 10
E-13 Employee Assignment 10
E-14 Employee Skill 10
E-15 End Item Requirement 6
E-16 Group 6
E-17 Inspection Tag 12
E-18 Inventory Adjustment 6
E-19 Invoice 11
E-20 Issue From Stock 12
E-21 Job Card 12
E-22 Labor Report 12
E-23 Machine Queue 14
E-24 Master Schedule 14
E-25 Material 14
E-26 Material Availability 15
E-27 Material Handling Equipment 15
E-28 Material Inventory 15
E-29 Material Move Authorization 15
E-30 Material Requirement 15
E-31 Material Requisition 15
E-32 Material Requisition Item 15

Figure 4-3. Sample Entity Pool

2. ENTITY DEFINITION

This is a definition of the entity that is most
commonly used in the enterprise. It is not intended
to be a dictionary. Since the meaning of the
information reflected in the model is specific to the
viewpoint of the model and the context of the model
defined in Phase Zero, it would be meaningless (if not
totally confusing) to include-definitions outside of
the Phase Zero scope. Howeveri there may be slight
connotative differences in the way that the entity is
defined, primarily based on contextual usage.
Whenever these occur, or whenever there are alternate
definitions (which are not necessarily the most common
from the viewpoint of the model), these should also be

4-15

UM 620341002
30 September 1990

recorded. It is up to the reviewers to identify what
definition should be associated with the term used to
identify the entity. The Phase One definition process
is the mechanism used to force the evolvement of a
commonly accepted definition.

3. ENTITY SYNONYMS

This is a list of other names by which the entity
might be known. The only rule pertaining to this is
that the definition associated with the entity name
must apply exactly and precisely to each of the syn-
onyms in the synonym list.

Entity definitions are most easily organized and completed
by first going after the ones that require the least amount of
research. Thus, the volume of glossary pages will surge in the
shortest period of time. Then the modeler can conduct the re-
search required to fully define the rest of the names in the
pool. Good management of the time and effort required to gath-
er and define the information will ensure that modeling contin-
ues at a reasonable pace.

4.3 Phase Two - Relationship Definition

The objective of Phase Two is to identify and define the
basic relationships between entities. At this stage of model-
ing, some relationships may be non-specific and will require
additional refinement in subsequent phases. The primary out-
puts from Phase Two are:

o Relationship matrix

o Relationship definitions

o Entity-level diagrams

4.3.1 Identify Related Entities

A "relationship" can be defined as simply an association
or connection between two entities. More precisely, this is
called a "binary relationship". IDEFIX is restricted to binary
relationships because they are easier to define and understand
than "n-ary" relationships. They also have a straightforward
graphical representation. The disadvantage is a certain awk-
wardness in representing n-ary relationships. But there is no
loss of power since any n-ary relationships can be expressed
using n binary relationships.

A relationship instance is the meaningful association or
connection between two entity instances. For example, an in-
stance of the entity OPERATOR, whose name is John Doe and
operator number is 862, is assigned to an instance of the enti-
ty MACHINE, whose type is drill press and machine number is

4-16

UM 620341002
30 September 1990

12678. An IDEFIX relationship represents the set of the same
type of relationship instances between two specific entities.
However, the same two entities may have more than one type of
relationship.

The objective of the IDEFIX model is not to depict all
possible relationships but to define the interconnection be-
tween entities in terms of existnce dependency (parent-child)
relationships. That is, an association between a parent entity
type and a child entity type, in which each instance of the
parent is associated with zero, one, or more instances of the
child and each instance of the child is associated with exactly
one instance of the parent. That is, the existence of the
child entity is dependent upon the existence of the parent
entity. For example, a BUYER issues zero, one or more
PURCHASE-ORDERS, and a PURCHASE-ORDER is issued by one BUYER.

If the parent and child entity represent the same real-
world object, then the parent entity is a generic entity and
the child is a category entity. For each instance of the cate-
gory entity, there is always one instance of the generic
entity. For each instance of the generic entity, there may be
zero or one instances of the category. For example, a
SALARIED-EMPLOYEE is an EMPLOYEE. An EMPLOYEE may or may not
be a SALARIED-EMPLOYEE. Several category entities may be asso-
ciated with a generic entity in a categorization but only one
category must apply to a given instance of the generic entity.
For-example, a categorization relationship might be used to
represent the fact that an EMPLOYEE may be either a SALARIED-
EMPLOYEE or an HOURLY-EMPLOYEE, but not both.

In the initial development of the model, it may not be
possible to represent all relationships as parent-child or
categorization relationships. Therefore, in Phase Two non-
specific relationship may be specified. Non-specific relation-
ships take the general form of zero, one, or more to zero, one,
or more (N:M). Neither entity is dependent upon the other for
its existence.

The first step in Phase Two is to identify the relation-
ships that are observed between members of the various
entities. This task may require the development of a relation-
ship matrix as shown in Figure 4-4. A relationship matrix is
merely a two-dimensional array, having a horizontal and a
vertical axis. One set of predetermined factors (in this case
all the entities) is recorded along one of the axes, and second
set of factors (in this case, also all the entities) is record-
ed along the other axis. An "X" placed in the inter-secting
points where any of the two axes meet is used to indicate a
possible relationship between the entities involved. At this
point, the nature of the relationship is unimportant; the fact
that a relationship may exist is sufficient.

The general tendency for new modelers is to over specify
the relationships between entities. Remember, the goal is to

4-17

UM 620341002
30 September 1990

ultimately define the model in terms of parent-child relation-
ships. Avoid identifying indirect relationships. For example,
if a DEPARTMENT is responsible for one or more PROJECTS and
each PROJECT initiates one or more PROJECT-TASKS, then a
relationship between DEPARTMENT and PROJECT TASK is not needed
since all PROJECT-TASKS are related to a PROJECT and all
PROJECTS are related to a DEPARTMENT.

More experienced modelers may prefer to sketch entity-
level diagrams rather than actually construct the relationship
matrix. However, it is important to define relationships as
they are identified.

Entity-Relationship Matrix Example

C

U) m

0 0

0 0 0
C. CC

S0 z. z

Buyer X

Requester X . X

Approver X

Purchase Requisition X X X X

Purchase Req. Item X

An Entity-Relationship Matrix only reflects that a
relationship of some kind may exist

Figure 4-4. Entity/Relationship Matrix

4-18

UM 620341002
30 September 1990

4.3.2 Define Relationships

The next step is to define the relationships which have
been identified. These definitions include:

o Indication of dependencies

o Relationship name

o Narrative statements about the relationship

As a result of defining the relationships, some relationships
may be dropped and new relationships added.

In order to establish dependency, the relationship between
two entities must be examined in both directions. This is done
by determining cardinality at each end of the relationship. To
determine the cardinality, assume the existence of an instance
of one of the entities. Then determine how many specific in-
stances of the second entity could be related to the first.
Repeat this analysis reversing the entities.

For example, consider the relationship between the enti-
ties CLASS and STUDENT. An individual STUDENT may be enrolled
in zero, one, or .more CLASSES. Analyzing from the other direc-
tion, an individual CLASS may have zero, one, or more STUDENTS.
Therefore, a many to many relationship exists between CLASS and
STUDENT with a cardinality of zero, one, or more at each end of
the relationship. (Note: this relationship is non-specific
since a cardinality of "exactly one" does not exist at either
end of the relationship. The non-specific relationship must be
resolved later in the modeling process.)

Take the relationship between the entities BUYER and PUR-
CHASE ORDER as another example. An individual BUYER may issue
zero, one, or many PURCHASE-ORDERS. An individual PURCHASE-
ORDER is always issued by a single BUYER. Therefore, a one to
many relationship exist between BUYER and PURCHASE-ORDER with a
cardinality of one at the BUYER end of the relationship and a
cardinaltiy of zero, one, or more at the PURCHASE-ORDER end of
the relationship. (Note: this is a specific relationship
since an "exactly one" cardinality exists at the BUYER end of
the relationship, i.e. BUYER is a parent entity to PURCHASE-
ORDER).

Once the relationship dependencies have been established,
the modeler must then select a name and may develop a defini-
tion for the relationship. The relationship name is a short
phrase, typically a verb with a conjunction to the second enti-
ty mentioned. This phrase reflects the meaning of the
relationship represented. Frequently, the relationship name is
simply a single verb; however, adverbs and prepositions also
appear frequently in relationship names. Once a relationship
name is selected, the modeler should be able to read the rela-

4-19

UM 620341002
30 September 1990

tionships and produce a meaningful sentence defining or
describing the relationship between the two entities.

In the case of the specific relationship form, there is
always a parent entity and a child entity; the relationship
name is interpreted from the parent end first, then from the
child to the parent. If a categorization relationship exists
between the entities, this implies both entities refer to the
same real-world object and the cardinality at the child end (or
category entity) is always zero, or one. The relationship name
may be omitted since the name "may be a" is implied. For exam-
ple, EMPLOYEE may be a SALARIED-EMPLOYEE.

In the case of the nonspecific relationship form, there
are two relationship names, one for each entity, separated by a
"/" mark. In this case, the relationship names are interpreted
from top to bottom or from left to right, depending on the
relative positions of the entities on the diagram, and then in
reverse.

Relationship names must carry meaning. There must be some
substance in what they express. The full meaning, in fact, the
modeler's rationale in selecting a specific relationship name,
may be documented textually by a relationship definition. The
relationship definition is a textual statement explaining the
relationship meaning. The same rules of definition that apply
to the entity definitions also apply to the relationship
definition:

o They must be specific

o They must be concise

o They must be meaningful

For example, if a one to zero or one relationship was de-
fined between two entities such as OPERATOR and WORKSTATION,
the relationship name might read "is currently assigned to".
This relationship could be supported by the following defini-
tion:

"Each operator may be assigned to some number of worksta-
tions during any shift, but this relationship reflects the
one the operator is assigned to at the moment."

4.3.3 Construct Entity-Level Diagrams

As relationships are being defined, the modeler may begin
to construct entity-level diagrams to graphically depict the
relationships. An example of an entity-level diagram is shown
in Figure 4-5. At this stage of modeling, all entities are
shown as square boxes and non-specific relationships are
permitted. The number and scope of entity-level diagrams

4-20

UM 620341002
30 September 1990

may vary depending on the size of model and the focus of
individual reviewers. If feasible, a single diagram dep .ting
all entities and their relationships is helpful for esta ,-h-
ing context and ensuring consistency. If multiple diagraia, are
generated, the modeler must take care that the diagrams are
consistent with one another as well as with the entity and
relationship definitions. The combination of entity-level dia-
grams should depict all defined relationships.

SUPPLIER YE

~~b kLi jM~SrPrmb& fW

PART PURCHASE-OROE,

Figure 4-5. Entity-Level Diagram

A special case of the entity-level diagram focuses on a
single entity and is referred to simply as an "Entity Diagram."
An example is shown in Figure 4-6. The generation of an entity
diagram for each and every entity is optional, but specific
guidelines should be followed if they are used:

4-21

UM 620341002
30 September 1990

SL1V=2 REO'JSTf 6 APPROvERv

w~~sses

PU~CI.4AS.hEO'1 s th

P3CASE.ItECOIIssue o

Figure 4-6. Phase Two (Entity-Level) Diagram Example

1. The subject entity will always appear in the approxi-
mate center of the page.

2. The parent or generic entities should be placed above
the subject entity.

3. The child or category entities should be placed below
the subject entity.

4. Nonspecific relationship forms are frequently shown to
the sides of the subject entity box.

4-22

30 UM 620341002
30 September 1990

5. The relationship lines radiate from the subject entity
box to the related entities. The only associations
shown on the diagram are those between the subject en-
tity and the related entities.

6. Every relationship line has a label; in the case of
nonspecific relationship, the line has two labels,
separated by a "/".

At this point, the information available for each entity

includes the following:

1. The entity definition

2. The relationship names and optional definitions (for
both parent and child relationships)

3. Depiction in one or more entity-level diagrams

The information about an entity can be expanded by the ad-
dition of reference diagrams, at the modeler's discretion. Ref-
erence diagrams (diagrams for exposition only, sometimes called
FEOs) are an optional feature available to the modeler, to
which individual modeler conventions may be applied. These
diagrams are platforms for discussion between the modeler and
the reviewers. They offer a unique capability to the modeler
to document rationale, discuss problems, analyze alternatives,
and look into any of the various aspects of model development.
One example of a reference diagram is shown in Figure 4-7.
This figure depicts the alternatives available in the selection
of a relationship and is marked with the modeler's preference.

Another type of reference diagram, illustrated by Figure
example, the modeler has identified the problem and its
complexities for the reviewer's attention.

4-23

.- UM 620341002
30 September 1990

An "FEO" Used to Illustrate Alternatives

Parti12 Purchase Req/S

to Requeste Requestl
Requested

Purchase Req/5 Part/I 2

Don't we allow multiple This appears accurate
parts per Purchase but will require
Roq?? ____________ refinement In Phase lU.

Figure 4-7. Reference Diagram (FEO)

By this stage, the modeler has compiled sufficient
information to begin the formal validation through kits and
walk-throughs. (See Sections 5.2 and 5.4)

4.4 Phase Three - Key Definitions

The objectives of Phase Three are to:

o Refine the non-specific relationships from Phase Two.

o Define key attributes for each entity.

o Migrate primary keys to establish foreign keys.

o Validate relationships and keys.

4-24

UM 620341002
30 September 1990

N

REAL WORLD

Thee. eie "no IhM the meufeled pl r e S i e o M" e Lte hal "Aee. p 'A. "am is
no mey tf at we "it "1 UelN in am " W ft ho a n fl.A. The b. plet Ae" iMe 1m umigO1
i41ll0e.18 This imoue mIs 0 e0 fl lM

MODEL I'.

This model oh payn 9ypa that can accommodate wty
part. e.g.. port'A. end any quntilty, ouch as three. but

PROBLEM What would happen to the model If oertallasd
PO Mentrl of We became a mlqulmoment?

Figure 4-8. Example Reference Diagram

The results of Phase Three are depicted in one or more Phase
Three (key-level) diagrams. In addition to adding key at-
tribute definitions, Phase Three will expand and refine entity
and relationship definitions.

4.4.1 Resolve Non-Specific Relationships

The first step in this phase is to ensure that all non-
specific relationships observed in Phase Two have been re-
fined. Phase Three requires that only a specific relationship
form be used; either a specific connection (parent-child) rela-
tionship or categorization relationship. To meet this require-
ment, the modeler will employ the use of refinement alterna-
tives. Refinement alternative diagrams are normally divided
into two parts: the left part deals with the subject (the non-
specific relationship to be refined), and the right part deals
with the refinement alternative. An example of a refinement
alternative dealing with a many-to-many resolution is exhibited
in Figure 4-9.

4-25

UM 620341002
30 September 1990

This

ROBBER BANK

Resolves To

ROBBER BANK

commits-" experiences

BANK-ROBBE RY

Figure 4-9. Non-Specific Relationship Refinement

The process of refining relationships translates or con-
verts each non-specific relationship into two specific
relationships. New entities evolve out of this process. The
non-specific relationship shown in Figure 4-9 indicates that a
ROBBER may rob many BANKS and a BANK may be robbed by many
ROBBERs. However, we cannot identify which ROBBER robbed which
BANK until we introduce a third entity, BANK-ROBBERY, to re-
solve the non-specific relationship. Each instance of the
entity BANK-ROBBERY relates to exactly one BANK and one ROBBER.

4-26

UM 620341002
30 September 1990

In earlier phases, we have been working with what we might
informally call the "natural entities." A natural entity is
one that we will probably see evidenced in the source data list
or in the source material log. A natural entity would include
such names as the following:

1. Purchase Order

2. Employee

3. Buyer

It is during Phase Three that we begin to see the appear-
ance of "associative entities" or what may informally be called
"intersection entities." Intersection entities are used to
resolve non-specific relationship and generally represent order
pairs of things which have the same basic characteristics
(unique identifier, attributes, etc.) as natural entities.
Although the entity BANK-ROBBERY in the previous example might
be considered a natural entity, it really represents the
pairing of ROBBERS with BANKS. One of the subtle differences
between the natural and intersection entities is in the entity
names. Typically, the entity name for natural entities is a
singular common noun. On the other hand, the entity name of
the intersection entities may be a compound noun.

The intersection entity is more abstract in nature, and
normally results from the application of rules governing the
validity of entities that are first applied in Phase Three.
The first of these rules is the rule requiring refinement of
all non-specific relationships. This process of refinement is
the first major step in stabilizing the integrated data struc-
ture.

This process of refinement involves a number of basic
steps:

1. The development of one or more refinement alternatives
for each non-specific relationship.

2. The selection by the modeler of a preferred alterna-
tive, which will be reflected in the Phase Three
model.

3. The updating of Phase One information to include new
entities resulting from the refinement.

4. The updating cf Phase Two information to define rela-
tionships associated with the new entities.

4.4.2 Depict Function Views

The volume and complexity level of the data model at this
point maybe appreciable. It was quite natural during Phase One

4-27

UM 620341002
30 September 1990

to evaluate each entity independently of the other entities.
At that juncture the entities were simply definitions of words.
In Phase Two, it may have been practical to depict all
relationships in a single diagram because the total volume of
entities and relationships is typically not too large. In
Phase Three, however, the volume of entities and the complexity
of relationships being reflected in the model are normally such
that an individual can no longer construct a total mental image
of the meaning of the model. For this reason, the model may be
reviewed and validated from multiple perspectives. These per-
spectives enable the evaluation of the model in a fashion more
directly related to the functional aspects of the enterprise
being modeled. These perspectives are represented by a
"function view". Each function view is depicted in a single
diagram. Its purpose is to establish limited context within
which portions of the model can be evaluated at one sitting.

Function views can be instrumental in the evaluation and
validation of the data model. The modeler must exercise some
care in the determination or selection of topics illustrated in
a function view. Two methods that have been used are the fol-
lowing:

1. Select sample source material as the topic of a func-
tion view, e.g., purchase order.

2. Relate the function view to job categories or specific
processes, represented by the organizational depart-
ments or functional areas identified as sources in
Phase Zero.

For example, in Figure 4-10 the data within the sample
function view can be used to reconstruct a purchase order or to
reconstruct a report about some number of purchase orders.
When constructing a function view, the author must have the
topic in mind so that it can be precisely expressed.

4.4.3 Identify Key Attributes

Phase Three of the IDEFIX methodology deals with the iden-
tification and definition of elements of data about entity in-
stances referred to as candidate keys, primary keys, alternate
keys, and foreign keys. The purpose of this step is to identi-
fy attribute values that uniquely identify each instance of an
entity.

4-28

30 UM 620341002
30 September 1990

VENDORM1

P.OJT PARTM

P.O. rTEM36

ORDERED PART 73

Figure 4-10. Scope of a Function View

It is important at this point that the definition and the
meaning of the terms attribute instance and attribute be empha-
sized. An attribute instance is a property or characteristic
of an entity instance. Attribute instances are composed of a
name and a value. In other words, an attribute instance is one
element of information that is known about a particular entity
instance. Attribute instances are descriptors; that is, they
tend to be adjective-like in nature.

An example of some attribute instances and their respec-
tive entity instances is shown in Figure 4-11. Note that the

4-29

UM 620341002
- 30 September 1990

first entity instance, or individual, is identified with an em-
ployee number of "1," that the name associated with the entity
instance is "Smith," and that the job of the entity instance is
"operator." These attribute instances, taken all together,
uniquely describe the entity instance and separate that entity
instance from other similar entity instances. Every attribute
instance has both a type and a value. The unique combination
of attribute instances describes a specific entity instance.
An attribute represents a collection of attribute instances of
the same type that apply to all the entity instances of the
same entity. Attribute names are typically singular descrip-
tive nouns. In the example of the Employee entity, there are
several attributes, including the following:

o Employee number

o Employee name

o Employee job/position

An example of how attribute instances are represented as
attributes is also shown in Figure 4-11. The attribute
instances belong to the entity instances. But the attributes
themselves belong to the entity. Thus, an ownership associa-
tion is established between an entity and some number of at-
tributes.

An attribute has only one owner. An owner is the entity
in which the attribute originates. In our example, the owner
of the EMPLOYEE-NUMBER attribute would be the EMPLOYEE entity.
Although attributes have only one owner, the owner can share
the attribute with other entities. How this works will be dis-
cussed in detail in later segments.

4-30

UM 620341002
30 September 1990

ENTITY INSTANCES

ATTRIBUTE INSTANCES
AME SMITH NAME:JC ES NAME:STARBUCK

N O:INO.:2 NO.:3

JOB: OPERATOR JOB:SUPE VISOR JOB:PILOT

A set to which "Smith Jones, and Starbuck"
belong. In this case t . "entity" Is

EMPLOYEE

,T.TR I B U:I

The "Items" that commonly describe
an entity, e.g., employee. In this case
the attributes "name, no., and job"
commonly describe each employee.

Figure 4-11. Attribute Examples

An attribute represents the use of an attribute instance

to describe a specific property of a specific entity
instance.

Additionally, some attributes represent the use
of an attribute

instance to help uniquely identify a specific entity instance.

These are informally referred to as key attributes.

Phase Three focuses on the identification of the key
at-

tributes within the context of our model. In Phase Four the

nonkey attributes will be identified and defined.

4-31

UM 620341002
30 September 1990

One or more key attributes form a candidate key of an
entity. A candidate key is defined as one or more key at-
tributes used to uniquely identify each instance of an entity.
An employee number is an example of one attribute being used as
a candidate key of an entity. Each employee is identified from
all the other employees by an employee number. Therefore, the
EMPLOYEE-NUMBER attribute is a candidate key, which we can say
uniquely identifies each member of the EMPLOYEE entity.

Some entities have more than one group of attributes that
can be used to distinguish one entity instance from another.
For example, consider the EMPLOYEE entity with the EMPLOYEE-
NUMBER and SOCIAL-SECURITY-NUMBER attributes, either of which
by itself is a candidate key. For such an entity one candidate
key is selected foi use in key migration and is designated as
the primary key. The others are called alternate keys. If an
entity has only one candidate key, it is automatically the pri-
mary key. So, every entity has a primary key, and some also
have alternate keys. Either type can be used to uniquely iden-
tify entity instances, but only the primary key is used in key
migration.

In the model diagram, a horizontal line is drawn through
the subject entity box and the primary key is shown within the
box, above that line. If there is more than one attribute in a
primary key (e.g., project number and task number are both
needed to identify project tasks), they all appear above the
line. If an entity has an alternate key, it is assigned a
unique alternate key number. In the diagram this number ap-
pears in parentheses following each attribute that is part of
the alternate key. If an attribute belongs to more than one
alternate key, each of the numbers appears in the parentheses.
If an attribute belongs to both an alternate key and the prima-
ry key, it appears above the horizontal line followed by its
alternate key number. If it does not belong to the primary
key, it appears below the line. Examples of the various key
forms are shown in Figure 4-12.

The process of identifying keys consists of:

1. Identifying the candidate key(s) for an entity.

2. Selecting one as the primary key for the entity.

Since -me candidate keys may be the result of migration, key
identitication is an iterative process. Start with all the en-

4-32

UX 620341002
30 September 1990

Emroehaur brN

Figre4-2.KeU Frm

PRIA3YKE

UM 620341002
30 September 1990

tit ies that are not a child or category in any relationship.
These are usually the ones whose candidate keys are most obvi-
ous. These are also the starting points for key migration be-
cause they do not contain any foreign keys.

4.4.4 Migrate Keys

Key migration is the process of replicating one entity's
primary key in another related entity. The replica is called a
foreign key. The foreign key value in each instance of the
second entity is identical to the primary key value in the re-
lated instance of the first entity. This is how an attribute
that is owned by one entity comes to be shared by another.
Three rules govern key migration:

1. Migration always occurs from the parent or generic en-
tity to the child or category entity in a relation-
ship.

2. The entire primary key (that is, all attributes that
are members of the primary key) must migrate once for
each relationship shared by the entity pair.

3. Alternate key and nonkey attributes never migrate.

Each attribute in a foreign key matches an attribute in
the primary key of the parent or generic entity. In a category
relationship the primary key of the category entity must be
identical to that of the generic entity. In other relation-
ships the foreign key attribute may be part of the primary key
of the child entity, but it does not have to be. Foreign key
attributes are not considered to be owned by the entities in
which they appear, because they are reflections of attributes
in the parent entities. Thus, each attribute in an entity is
either owned by that entity or belongs to a foreign key in that
entity.

In the model diagrams, foreign keys are noted much the
same as alternate keys, i.e., "(FK)" appears behind each at-
tribute that belongs to the foreign key. If the attribute also
belongs to the primary key, it is above the horizontal line; if
not, it is below.

If the primary key of a child entity contains all the at-
tributes in a foreign key, the child entity is said to be
"identifier dependent" on the parent entity, and the relation-
ship is called an "identifying relationship". If any at-
tributes in a foreign key do not belong to the child's primary
key, the child is not identifier dependent on the parent, and
the relationship is called "nonidentifying". In Phase Three
and Four diagrams, only identifying relationships are shown as
solid lines; non-identifying relationships are shown as dashed
lines.

4-34

UM 620341002
30 September 1990

An entity that is the child in one or more identifying re-
lationships is called an "identifier-dependent entity". One
that is the child in only non-identifying relationships (or is
not the child in any relationships) is called an "identifier-
independent entity". In Phase Three and Four diagrams, only
identifier-independent entities are shown as boxes with square
corners; dependent entities are shown as boxes with rounded
corners.

An example of key migration of an attribute from a parent
entity to a child entity is shown in Figure 4-13.

CUSTOMER

CUSTOMER-NUMBER

1 Parent

Entity

Migration
writes

$

CHECK
eCUSTOMER-NUMBER (W)

CHECK-NUMBER Child Entity

(Identifier-Dependent)

Figure 4-13. Key Migration to an Indentifier-Dependent Entity

In this example the CUSTOMER-NUMBER attribute (the primary key
of the CUSTOMER entity) migrates to (is a foreign key in) the
CHECK entity. It is then used in the CHECK entity as a member
of its primary key in conjunction with another attribute called
CHECK-NUMBER, which is owned by CHECK. The two attributes
(CUSTOMER-NUMBER and CHECK-NUMBER) together form the primary
key for the CHECK.

An example of key migration of an attribute from an
identifier-independent entity to another identifier-independent

4-35

UM 620341002
30 September 1990

entity is shown in Figure 4-14. In this example, the
DEPARTMENT-NO attributes migrates to EMPLOYEE. However, the
primary key of EMPLOYEE is EMP-ID. Therefore, DEPT-NO appears
as a foreign key below the key attribute line. The relation-
ship line is dashed since it is a non-identifying relationship.

The same attribute can generate more than one foreign key
in the same child entity. This occurs when the attribute mi-
grates through two or more relationships into the child entity.
In some cases, each child instance must have the same value for
that attribute in both foreign keys. When this is so, the at-
tribute appears only once in the entity and is identified as a
foreign key. In other cases, a child instance may (or must)
have different values in each foreign key. In these cases, the

DEPARTMENT
DEPT-NO

Parent
Entity

a
a
a
a

Migration 4- has
I

EMPLOYEE
EMP-ID

Child entity has its own
DEPT-NO(FK) unique identifier without

the parent's identifier

Figure 4-14. Migration to an Identifier-Independent Entity

attribute appears more than once in the entity and it becomes
necessary to distinguish one occurrence from another. To do
so, each is given a role name that suggests how it differs from
the others. Figure 4-15 shows an example of this.

4.4.5 Validate Key and Relationships

Basic rules governing the identification and migration of
keys are:

1. The use of non-specific relationship syntax is prohib-
ited.

4-36

UM 620341002
30 September 1990

2. Key migration from parent (or generic) entities to
child (or category) entities is mandatory.

3. The use of an attribute that might have more than one
value at a time for a given entity instance is prohib-
ited. (No-Repeat Rule)

PART/

PART-NO '

COMPONENT -- 4) ASSEMBLED1N FROM

ASSEMBLY-STRUCTURE/1O
[COMPNOPART4IO(P)

Each of the migrated 6PART-NO keys
given an additional ROLEI name ientfying
its function in the child. The role name I
separated from the foreign key name by
a period.

Figure 4-15. Attribute Role Names

4. The use of an attribute that could be null (i.e., have
no value) in an entity instance is prohibited. (No-
Null Rule)

5. Entities with compound keys cannot be split into
multiple entities with simpler keys (Smallest - Key
Rule).

6. Assertions are required for dual relationship paths
between two entities.

We have already discussed the first two rules in previous
sections, so we will turn our attention to the last group of
rules at this point.

4-37

UM 620341002
30 September 1990

Figure 4-16 shows a diagram dealing with the application
of the "No-Repeat Rule". Notice that the subject of the dia-
gram shows both the PURCHASE-ORDER-NUMBER and PURCHASE-ORDER-
ITEM-NUMBER as members of the primary key of PURCHASE-ORDER.

Subject Refinement

PURCHASE-ORDER
PURCHASE-ORDER-NO.

PURCHASE-ORDEIS

URCHASE-ORDER-NO.
URCHASE.ORDER-flEM.NO. ALM40RIS THE

PURCHAPUORCEAnE OF

PUJRCHASE4RO0E-rO,

Each Purchase Order Can PURCHASR .DER-rTEM-NO

Have Multiple Purchase
Order Items

New Entity Results

Figure 4-16. No-Repeat Rule Refinement

However, evaluation of the way PURCHASE-ORDER-ITEM-NUMBER is
used will show that a single PURCHASE-ORDER (entity instance)
can be many PURCHASE-ORDER-ITEM-NUMBER, one for each item being
ordered. To properly depict this in the data model, a.new
entity called PURCHASE-ORDER-ITEM would have to be created, and
the relationship label, syntax, and definition added. Then,
the true characteristics of the association between purchase
orders and purchase order items begin to emerge.

Figure 4-17 shows a refinement alternative diagram dealing
with the application of the "No-Null Rule". Note that PART-
NUMBER has migrated to PURCHASE-ORDER-ITEM. This association
was established because purchase order items are linked in some
way with the parts. However, the diagram as shown asserts that
every purchase order item is associated with exactly one part
number. Investigation (or perhaps reviewer comment) reveals
that not all purchase order items are associated with parts.
Some may be associated with services or other commodities that

4-38

UM 620341002
30 September 1990

have no part numbers. This prohibits the migration of PART-
NUMBER directly to the PURCHASE-ORDER-ITEM entity and requires
the establishment of a new entity called ORDERED-PART in our
example.

Subject Refinement

pAnRrO purA1t. 1401ER4T1!V PART"O

PU[DH A(M S OAOER (I'mNO!

t 0
e m,,- m3 Iv B

* .

1CMASE.0omfA.ITA 1ooEROMpAUWPA-UU JFI 0

This stucure do" not This Onfjdurt F 111408V'
prvde for Purchase OidW neaed fo lefty.
Bens tht reay n4t be I(
Peru (0.g. servies.ervnslruune seios. aS.)

Figure 4-17. "No-Null" Rule Refinement

Once a new entity is established, key migration must occur
as mandated by the migration rule, and the modeler will once
again validate the entity-relationship structure with the
application of the No-Null and No-Repeat Rules.

Each compound key should be examined to make sure it com-
plies with the Smallest-Key Rule. This rule requires that no
entity with a compound key can be split into two or more enti-
ties, with simpler keys (fewer components), without losing some
information. This rule is a combination and extension of the
fourth and fifth normal forms in relational theory. Other
rules of normalization, such as Full-Functional-Dependency and
No-Transitive-Dependency cannot be applied until non-key at-
tributes are applied to the model in Phase Four.

In Phase Two, the tendency to specify redundant relation-
ships was mentioned. However, the Phase Two analysis was
primarily judgemental on the part of the modeler. With keys
established, the modeler can now be more rigorous in the analy-
sis. A dual path of relationships exists anytime there is a
child entity with two relationships which ultimately lead back
(through one or more relationships) to a common "root" parent
entity. When dual paths exist, a "path assertion" is required

4-39

UM 620341002
30 September 1990

to define whether the paths are equal, unequal, or indetermi-
nate. The paths are equal if, for each instance of the child
entity, both relationship paths always lead to the same root
parent entity instance. Tie paths are unequal if, for each in-
stance of the child entity, both relationships paths always
lead to different instances of the root parent. The paths are
indeterminate if they are equal for some child entity instances
and unequal for others. If one of the paths consist of only a
single relationship and the paths are equal, then the single
relationship path is redundant and should be removed.

The simplest case of dual path relationship is one in
which both paths consist of a single relationship. An example
of this structure was shown in Figure 4-15. Since each in-
stance of PART-USAGE may relate to two different instances of
PART, no redundancy exists. The path assertion in this case
would require the paths to be unequal, since a PART cannot be
assembled into itself.

If one of the paths consists of multiple relationships.and
the other consists of a single relationship, the structure is
referredUV "triad". An example triad is shown in Figure
4-18. 6?A1ih/1

DIV-NO REDUNDANT
RELATIONSHIP

has

has

DE PARTMENT/2SDEPT-NO

DIV-NO (FK) has

EMPLOYEE/3EMP'NO

x DEPT-NO (FKI
DIV-NO (FK)

Figure 4-18. Example Triad

In this case, EMPLOYEE relates to DIVISIONs both direct-
ly and indirectly through DEPARTMENT. If the assertion is that

4-40

UM 620341002
30 September 1990

the DIVISION that an EMPLOYEE belongs to is the same DIVISION
as his DEPARTMENT (i.e. equal parts) then the relationship
between DIVISION and EMPLOYEE is redundant and should be
removed. Note that, if we had asserted that some but not all
EMPLOYEEs could, in fact, belong to two different DIVISIONS,
another entity, such as LOANED-EMPLOYEE, would have to be added
to satisfy application of the No-Null Rule to DIV-NO as a
foreign key EMPLOYEE.

Assertions may also be applied to dual path relationships
when both paths evolve more than one relationship. Figure 4-19
illustrates an example where two relationship paths exist be-
tween DEPARTMENT and TASK-ASSIGNMENT. If an EMPLOYEE can only
be assigned to a PROJECT which is managed by his DEPARTMENT,
then the paths are equal. If an EMPLOYEE can only be assigned
to a PROJECT which is not managed by his DEPARTMENT, then the

DEPARTMENT/I
DEPT-NO

manages employs

4 4
PROJECT/3 EMPLOYEE/4

PROJ-NO EM P-NO
DEPT-NO (FK) DEPT-NO (FK)

consists of

TASK/3
r PRFOJ-No (KTASK-NO (K

is performed by is assigned

TASK-ASSIGNMENT/5
rEMP-NO (FK)

PROJ-NO (FK)
TASK-NO (FK _

Figure 4-19. Path Assertions

4-41

UM 620341002
30 September 1990

paths are unequal. If an EMPLOYEE can be assigned to a PROJECT
regardless of the managing DEPARTMENT, then the paths are inde-
terminate. Indeterminate paths are generally assumed unless an
assertion is specified. Assertions should be attached as notes
to the Phase Three diagrams and included in the child entity
definition.

As primary key members are identified, entries are made
into an attribute pool. An entity/attribute matrix may be used
to identify the distribution and use of attributes throughout
the model. The matrix has the following characteristics:

1. All entity names are depicted on the side.

2. All attribute names are depicted at the top.

3. The use of attributes by entities is depicted in the
adjoining vectors, as appropriate, using codes such as
the following:

"0" = Owner
"K" = Primary key
"I" = Inherited

A sample of an entity/attribute matrix is shown in
Figuin. 4-20. This matrix is a principal tool in maintaining
model continuity.

4.4.6 Define Key Attributes

Once the keys have been identified for the model, it is
time to define the attributes that have been used as keys. In
Phase Three, definitions are developed for key attributes only.
The same basic guidelines for these definitions apply: they
must be precise, specific, complete, and universally
understandable.

Attribute definitions are always associated with the enti-
ty that owns the attribute. That is, they are always members
of the owner entity documentation set. Therefore, it is simply
a matter of identifying those attributes owned by each entity,
and used in that entity's primary key or alternate key. In the
example shown in Figure 4-20 those attributes are coded "OK" on
the entity/attribute matrix.

4-42

UM 620341002
30 September 1990

Ent~y 1 2 31 15 6 7 8 9 0111211 1411516 7 18 19,2 ,2122

Purch~ase Requistion I IOK 1 I

Buyer 2 1 K

Vendlor 3 OKi

Purc.hase Order 4 1 1 OKi

Requester 6 OK

Part 9

Purchase Req. Item 101 1K
Purchase Requ itna 1 I --K

Apy v 2 I K

Part Source 22J. LA

Figure 4-20. Entity/Attribute Matrix

The attribute definition consists of:

" attribute name
P attribute definition

u attribute synonyms

4.4.7 Depict Phase Three Results

As a result of key identification and migration, the Func-tion View diagrams may now be updated to reflect and refine re-

lationships. The Phase Three Function View diagrams should al-
so depict:

F Primary, alternate, and foreign key attributes.

o Identifier-independent (square corner) and identifier-
dependent (rounded corner) entities.

o Identifying (solid line) and non-identifying (dashed-

line) relationships.

4- 17

UM 620341002
30 September 1990

An example of a Phase Three Function View is shown in Figure 4-
21. Much of the information generated by Phase Three analysis
may be reported by entity. Each entity documentation set con-
sists of:

o A definition of the entity,

o A list of primary, alternate, and foreign key at-

tributes,

STUDENT/I COURSE/1 6 SEMESTSPI1 7 INSTRUCTORJ 4

ENROLLMENT/2 OFFERINTYPE

IETNN FULL-TIMEM2 PART-TIME/24

ENROLLMEWTYKby .d
CLASS-SECTIOW24 TEXTBOOK152

GRAD)F/22 AUDIT/23 TEX79=0K.NO

I~~MESEESRER-N (SVESIRQ

COURSE E-FSE(FIQI
SEMESTERNO SBAETEISNO ETRUET4O(P IQI

Figur 4-21. OIExapl f hseII untonVewDaga

o~~~~~~~ A defniio foawe e trbts

oiur A- listpl of ainhpse II whicthen et Disaate

gory entity,

4-44

UM 620341002

o A list of identifying relationships in which the enti-
ty is a parent,

o A list of identifying relationships in which the enti-
ty is a child,

o A list of non-identifying relationships in which the
entity is a parent, and

o A list of non-identifying relationships in which the

entity is a child.

o A definition of dual path assertions (if appropriate)

Optionally, the modeler may also wish to construct an individu-
al diagram for entity following the same approach as the
optional Entity Diagram in Phase Two.

Along with a tabular listing of relationship definitions,
a cross reference back to the associated entities is helpful.
Owned and shared attributes should also be cross-referenced in
the Phase Three reports.

4.5 Phase Four - Attribute Definition

Phase Four is the final stage of model developing. The
objectives of this plan are to:

o Develop an attribute pool
o Establish attribute ownership
o Define non-key attributes
o Validate and refine the data structure

The results of Phase Four are depicted in one or more Phase
Four (attribute-level) diagrams. At the end of Phase Four, the
data model is fully refined (corresponding to fifth normal form
in relational theory). The model is supported by a complete
set of definitions and cross-references for all entities,
attributes (key and non-key), and relationships.

4.5.1 Identify Nonkey Attributes

II-I45

UM 620341002

The construction of an attribute pool was begun in Phase
Three with the identification of keys. The first step in Phase
Four is to expand the attribute pool to include nonkey
attributes. An attribute pool is a collection of potentially
viable attribute names. Each name in the attribute pool occurs
only once, and each is assigned a unique identifying number.

The process of constructing the attribute pool is similar
in nature to construction of the entity pool. For the entity
pool in Phase One, we extracted names that appeared to be
object nouns from the Phase Zero source data list. Now we will
return to the source data list and extract those names that
appear to be descriptive nouns. Descriptive nouns (nouns that
are used to describe objects) commonly represent attributes.
Figure 4-22 shows an example attribute pool.

Many of the names on the source data list from Phase Zero
were entered into the entity pool in Phase One as potential
entities. Some of those names, however, may have been
recognized by Phase Three as not qualifying as entities. In
all probability, these are attributes. In addition, many of
those names that were not selected from the list in the first
place are probably attributes. The list, then, in conjunction
with the knowledge gained during Phase One and Phase Two, is
the basis for establishment of the attribute pool. The
attribute pool is a list of potentially viable attributes
observed within the context of the model. This list, in all
likelihood, will be appreciably larger than the entity pool.

The attribute pool is the source of attribute names that
are used in the model. In the event that attributes are
discovered in later phases of the modeling effort, the
attributes are added to the attribute pool and assigned a
unique identifying number; they then progress to their intended
use in the model.

4.5.2 Establish Attribute Ownership

The next step requires that each nonkey attribute be
assigned to one owner entity. The owner entity for many of
them will be obvious. For example, the modeler should be able
to readily associate the VENDOR-NAME attribute with the VENDOR
entity. However, some attributes may cause the modeler
difficulty in locating their owner entities.

4-46

UM 620341002

Source
Data

Number Attribute Name Number

1 Purchase Requisition Number 1
2 Buyer Code 2
3 Vendor Name 3
4 Order Code 4
5 Change Number 5
6 Ship to Location 6
7 Vendor Name 8
8 Vendor Address 8
9 Configuration Code 9
10 Configurer's Name 9
11 Extra Copy Code 10
12 Requester Name 11,42
13 Department Code 12
14 Ship Via 13
15 Buyer Name 14
16 Purchase Order Number 15
17 Purchase Requisition Issue Date 16
18 Quality Control Approval Code 17
19 Taxable Code 19
20 Resale Code 20
21 Pattern Number 21
22 Payment Terms 22
23 Freight on Board Delivery Location 18
24 Purchase Requisition Item Number 23
25 Quantity Ordered 24
26 Quantity Unit Measure 25
27 Part Number 26
28 Part Description 27
29 Unit Price 28
30 Price Unit of Measure 29
31 Purchase Requisition Line Code 31
32 Requested Delivery Date 32
33 Requested Delivery Quantity 33
34 Commodity Code 30

Figure 4-22. Sample Attribute Pool

4-47

UM 620341002

If the modeler is not certain of the owner entity of an
attribute, he may refer to the source material from which the
attribute was extracted. This will aid in the determination of
the owner. In Phase Zero, the source data list was established
and became the foundation for the attribute pool. The source
data list points the modeler to the locations where the
attribute values represented are used in the original source
material. By analyzing the usage of the attribute in the
source material, the modeler will be able to more easily
determine the owner entity in the data model. The modeler
should keep in mind that the governing factor for determining
ownership of the attributes is the occurrence attribute
instances represented by the attribute values reflected in the
source material. As each attribute is assigned to its owner
entity, the assignment should be recorded.

4.5.3 Define Attributes

A definition must be developed for each of the attributes
identified in Phase Four. The principles governing other
definitions used in the data model, and particularly those in
Phase Three, apply here as well. The definitions developed
must be precise, specific, complete, and universally
understandable. These attribute definitions are produced in
the same format as the attribute definitions from Phase Three.

Attribute definition include:

o attribute name

o attribute definition

o attribute synonym(s)/aliases

Each attribute must be given a unique name since within an
IDEFlX model the "same name - same meaning rule" applies to
both entities and attributes. Therefore, the modeler may wish
to adopt a standard approach for the attribute names. However,
user recognizable/natural English names are encouraged for
readability to support validation. Attribute names which must
satisfy strict programming language rules, e.g. seven character
FORTRAN variable names should always be identified as aliases
if included at all.

Within the attribute definition, the modeler may wish to
identify the attribute format, e.g. alpha-numeric code, text,
money, date, etc. The domain of acceptable values may also be
specified in definition in terms of a list, e.g. Monday,
Tuesday, Wednesday, Thursday, or Friday, or a range, e.g.
greater than zero but less than 10. Assertions which involve
multiple attributes may also be specified in definition. For
example, the attribute EMPLOYEE-SALARY must be greater than
$20,000 when EMPLOYEE-JOB2ODE equals twenty.

i-418

UM 620341002
30 September 1990

4.5.4 Refine Model

The modeler is now ready to begin the Phase Four
refinement of relationships. The same basic rules applied in
Phase Three also apply to this refinement. The application of
the No-Null and No-Repeat Rules introduced in Phase Three are
now applied to both the key and nonkey attributes. As a
result, the modeler can expect to find some new entities. As
these entities are identified, the key migration rule must be
applied, just as it was in Phase Three.

The only difference in applying the No-Null and No-Repeat
Rules in Phase Four is that these rules are applied primarily
to the nonkey attributes. Figure 4-23 illustrates the

Subject Refinefient

EMPLOYEE1 EMPLOYEE/I
EMP-NO EMP-NO
HOURLY-RATE

PAY-TYPE
Not all empboee have
an hourly-Mae; ontyenvloyem who aro
paid hourly do.

HWURLY.EMPLOYEE2

Figure 4-23. Phase IV - Applying the No-Null Rule

application of the No-Null Rule to a nonkey attribute. Figure
4-24 illustrates the application of the No-Repeat Rule to a
nonkey attribute.

An alternative to immediately creating new entities for
attributes that violate the refinement rules is to mark the
violators when they are found and create new entities later.
Violators of the No-Null Rule can be marked by placing an "N"
(for the No-Null Rule) or an "R" (for the No-Repeat Rule) in
parentheses following their names in attribute diagrams.

4-49

UM 620341002
30 September 1990

Subject Refinement

PART/i PART/i
PART-NO PART-NO
SERIAL-NO

Many serial numbers
may exist for the same
part number.

is physically

SERIALIZED-PART/2
PART-NO (FK)
SERIAL-NO

Figure 4-24. Phase IV - Applying the No-Repet Rule

As new entities emerge, they must be entered in the entity
pool, defined, reflected in the relationship matrix, etc. In
short, they must meet all of the documentation requirements of
earlier phases in order tc qualify for inclusion in Phase Four
material.

The ownership of each attribute should also be evaluated
for compliance with the Full-Functional-Dependency Rule. This
rule states that no owned nonkey attribute value of an entity
instance can be identified by less than the entire key value
for the entity instance. This rule applies only to entities
with compound keys and is equivalent to the second normal form
in relational theory. For example, consider the diagram shown
in Figure 4-19. If PROJECT-NAME was a nonkey attribute thought

4-50

UM 620341002
30 September 1990

to be owned by the entity TASK, it would pass the no-null and
no-repeat rules. However, since the PROJECT-NAME could be
identified from only the PROJ-NO portion of the TASK key, it
does not satisfy the Full-Functional-Dependency Rule. PROJECT-
NAME would obviously be an attribute of the entity PROJECT.

All attributes in a Phase Four model must also satisfy the
rule of No-Transitive-Dependency. This rule requires that no
owned nonkey attribute value of an entity instance can be
identified by the value of another owned or inherited, nonkey
attribute of the entity instance. This rule is equivalent to
the third normal form in the relational theory.

For example, consider the entity EMPLOYEE in Figure 4-19.
If DEPT-NAME was to the entity EMPLOYEE as a nonkey attribute,
it would satisfy the no-null and no-repeat rules. However,
since DEPT-NAME could be determined from DEPT-NO which is an
inherited nonkey attribute, it does not satisfy the No-
Transitive-Dependency Rule and therefore, is not an owned
attribute of EMPLOYEE. DEPT-NAME would obviously be a nonkey
attribute of the entity DEPARTMENT.

A simple way to remember the rules of Full-Functional-
Dependency and No-Transitive-Dependency is that "a nonkey
attribute must be dependent upon the key, the whole key, and
nothing but the key".

4.5.'5 Depict Phase Four Results

As a result of attribute population, the Function View
diagrams can now be updated to reflect a refinement of the
model and expanded to show nonkey attributes. Nonkey
attributes are listed below the line inside each entity box.
The size of the entity box may need to be expanded to provide
room. An example of a Phase Four Function View is shown in
Figure 4-25.

Supporting definitions and information for the model
should be updated to reflect nonkey attribute definition and
ownership assignment. This additional information may be
reported by entity along the previously defined information.
Each entity documentation set will now consist of:

o A definition of each entity

o A list of primary, alternate, and foreign key
attributes

4-51

UM 620341002
30 September 1990

o A list of owned nonkey attributes

o A definition of each owned attribute (both key and
nonkey)

STUDENTl COURSE lS SEMESTE/I? 4. _UCTOWI4

s, Iw- - W I .,.L- ,

I

--"1C 0 "t9

ISC~" I CTsse ...LTI PAT-W . 2

ENOiAP4M r 4A --

CLASS-S CTIO?92 IP TlEXTWO

Figure 4-25. Example of Phase IV Function View Diagram

o A list of relationships in which the entity is the
parent:

- generic entity of a categorization
- identifying parent relationships
- non-identifying parent relationships

o A list of relationship(s) in which the entity is the
child:

- category entity of a categorization
- identifying child relationships
- non-identifying child relationships

o A definition of any dual path assertions

The optional individual entity diagrams may also be expanded to

show nonkey attributes.

4-52

UM 620341002
30 September 1990

Relationship definitions may be repeated within the
documentation set for each entity or listed separately with a
cross-reference to the entity. Key and nonkey attributes
should also be listed and cross-referenced to the entities.

4-53

UM 620341002
30 September 1990

SECTION 5

DOCUMENTATION AND VALIDATION

5.1 Introduction

The objective of IDEFIX is to provide a consistent inte-
grated definition of the semantic characteristics of data which
can be used to provide data administration and control for the
design of shareable databases and integration of information
systems. This means that the models must be well documented
and thoroughly validated by both business professionals and
systems professionals. Once an initial model has been built and
validated, configuration management of data models may become
an important consideration as new models are developed and
integrated with existing models.

Much of the work of model documentation and configuration
management can be eased through the use of software tools. At
the simplest level of support a word processing system can be
used to maintain the definition of entities, relationships and
attributes. Standard interactive graphics packages may be used
to create diagrams. These tools are limited in their benefit,
however, because they do not take the model content into ac-
count. Most commercial data dictionary systems do no support
the definition of semantic data models. However, some of the
data dictionary systems have a user definable section which can
be set up to store definitions and provide various reports.
Another alternative is to construct a simple database to house
the model description and to use the DBMS query facilities to
generate various reports. The active three-schema dictionary
of the U.S. Air Force Integrated Information Support System
(IISS) itself is implemented with a relational database manage-
ment system. Special modeling software has also recently be-
come commercially available. Important features for a modeling
software tool include:

o automated generation and layout of model diagrams,

o merging of data models,

o consistency-checking and automated refinement of mod-
els against the modeling rules,

o reporting capability, and

o configuration management support.

Although some level of automated support is highly desir-
able, it is not required for IDEFIX modeling. The following
sections will discuss model documentation and validation issues
assuming a minimum level of automated support.

5-1

UM 620341002
30 September 1990

5.2 IDEFIX Kits

A kit is a technical document which may contain diagrams,
text, glossaries, decision summaries, background information,
or anything packaged for review and comments. Each Phase of an
IDEFIX modeling project requires the creation of one or more
kits for review by subject matter experts and approvers of the
model. Figure 5-1 summarizes the kit review cycle. If a kit
is sent out for written comments, the author must always re-
spond to the reviewer's comments. As an alternative to
distributing kits for written comment, model walk-throughs may
be used to gain reviewer concensus. Walk-throughs are dis-
cussed in Sectior 5.4.

Author Library Commenter

Poucew Kit Writes
Producs , Comments
Now Kit on KitS1

C.ommented Kit

Writes .
Reactions -- Kit With Reactions
To Comments 4 Reviews

Control Author's
Copy Reactions

Discussion Requested

Control By Author or Commenter Kit to
Copy to a Reader
Author I File

File a

Figure 5-1. Kit Cycle

Each person participating in a project may wish to main-
tain a file of documentation received. A library function,
however, should be established to maintain the master and
reference files for each kit. The library function also serves
as a distribution mechanism for kit review. A complete
explanation of library files is given in the "ICAM Program Li-
brary Maintenance Procedures".

5-2

UM 620341002
30 September 1990

Although more than one kit may be used for each phase of
modeling, the following is a summary of the overall kit con-
tents which should be generated:

o Phase Zero Kit
- Kit cover sheet
- Statement of purpc3e and viewpoint
- Model development and review schedule
- Team membership and roles
- Source materials (optional)
- Author conventions (optional)

o Phase One Kit
- Kit cover sheet
- Entity pool
- Entity definitions

o Phase Two Kit
- Kit cover sheet
- Relationship matrix (optional)
- Phase Two (entity-level) diagrams
- Entity reports (definition and relationships)
- Relationship definitions
- Relationship/entity cross-reference

o Phase Three Kit

- Kit cover sheet
- Phase Three (key-level) diagrams
- Entity reports (definition, relationships,

assertions, and keys)
- Relationship definitions
- Key attribute list and definitions
- Relationship (entity cross-reference)
- Key attribute/entity cross-reference

o Phase Four Kit
- Kit cover sheet
- Phase Four (attribute-level) diagrams
- Entity reports (definition, relationships,

assertions, keys and attributes)
- Relationship definitions
- Attribute list and definitions (key and nonkey)
- Relationship/entity cross-reference
- Attribute/entity cross-reference (key and nonkey)

5.3 Standard Forms

An appropriate cover sheet distinguishes the material as a
kit. The cover sheet has fields for author, date, project,
document number, title, status, and notes. Complete one Cover
Sheet for each kit submitted and fill in the following fields
on the Cover Sheet (See Figure 5-2).

5-3

-~ UM 620341002
30 September 1990

AVW OIu -4

Us 00" MAM

Com

UNO

*%RN DOSE boom___ __ _ __

ft momsm- om C3 "

Figure 5-2. Kit Cover Sheet

o Working Information (Figure 5-2 note A)

- Author or team generating the model
- Project name and task number
- Date of original submission to library
- Dates of all published revisions
- Status of the model, either working, draft,
- recommended for acceptance, or publication as fi-

nal model.
- Reader signature and date after his/her review

o Reviewer Information (Figure 5-2 note B)

- Filing and copying information
- List of kit reviewers
- Schedule date for various stages of kit cycle

5-4

UM 620341002
30 September 1990

o Content Information (Figure 5-2 note C)

- Table of contents for the kit
- Status of each kit section
- Comments or special instructions to librarian

o Identification Information (Figure 5-2 note D)

- Model name ("Node") e.g. MFG-1
- Title of the model
- Page number

Standard Diagram Form

The Standard Diagram Form (Figure 5-3) has minimum struc-
ture and constraints. The sheet supports only the functions
important to the discipline of structured analysis:

o Establishment of context
o Cross-referencing between diagrams and support pages
o Notes about the content of each sheet

The diagram form is a single standard size for ease of
filing and copying. The form is divided into three major sec-
tions:

o Working information (Figure 5-3 note A)
o Message field (?igure 5-3 note B)
o Identification fields (Figure 5-3 note C)

I -" _ _ _ _ _ IS a

Figure 5-3. Standard Diagram Form

5-5

UM 620341002
30 September 1990

The form is designed so that the working information at
the top of the form may be cut off when a final approved-for-
publication version is completed. The Standard Diagram Form
should be used for everything created during the modeling ef-
forts including preliminary notes.

o The Author/Date/Project Fields

This tells who originally created the diagram, the date it
was first drawn, and the project title under which it was
created. The Date Field may contain additional dates,
written below the original date. These dates represent
revisions to the original sheet. If a sheet is released
without any change, no revision date is added.

o The Notes Field

This provides a check-off for notes written on the diagram
sheet. As comments are made on page, the notes are
successively crossed out. This provides a quick check for
the number of comments.

o The Status Field

The status classifications provide a ranking of approval.

working: The diagram is a major change, regaraless
of the previous status. New diagrams are
working copy.

Draft: The diagram is a minor change from the
previous diagram, and has reached some
agreed-upon level of acceptance by a set
of readers. Draft diagrams are those pro-
posed by a task leader, but not yet
accepted by a review meeting of the
technical committee or coalition.

Recommended Both this diagram and its supporting text
have been reviewed and approved by a meet-
ing of the technical committee or coali-
tion, and this diagram is not expected to
change.

Publication: This page may be forwarded as is for final

printing and publication.

o The Reader/Date Field

This is where a commenter initials and dates each form.

5-6

UM 620341002
30 September 1990

o The Context Field

This field is not used when developing IDEFIX models.

o The Used at Field

This is a list of diagrams that use this sheet in some
way.

o The Message Filed

The Message Field contains the primary message to be con-
veyed. In IDEFIX, this field may contain diagrams, func-
tion views, definitions, matrices, indexes, etc. The au-
thor should use no paper other than diagram forms. A
standard matrix diagram as shown in Figure 5-4 can be used
for a variety of purposes.

o The Title Field

The Title Field contains the name of the material present-
ed on the Standard Diagram Form. If the Message Field
contains an entity diagram, the contents of the Title
Field must precisely match the title of the subject
entity.

o The Number Field

This field contains all numbers by which this sheet may be
referenced. Which includes the following:

- C-Number

The C-number is composed of the author's initials fol-
lowed by a number sequentially assigned by the author.
This C-number is placed in the lower left corner of
the Number Field and is the primary means of reference
to a sheet. Every diagram form used by an author re-
ceives a unique C-number. When a model is published,
the C-number may be replaced by a standard sequential
page number (e.g., pg. 17).

- Page Number

A kit page number is written by the librarian at the
right-hand side of the Number Field. This is composed
of the document number followed by a number identify-
ing the sheet within the document.

5.4 The IDEF Model Walk-Through Procedure

In addition to the kit cycle, a walk-through procedure has
been developed. This procedure may be used when the partici-

5-7

UM 620341002
30 September 1990

pants in building a model can be assembled for commenting:

1. Present the model to be analyzed by using its entity
pool. This is the model's table of contents and gives
the reviewers a quick overview of what is to come.

2. Present a glossary of terms. This will allow each re-
viewer to replace personal meanings of words with

WDAT WIL. ~ I INRE anm RUA Gall[Cmsun

-CT.- - -.

Figure 5-4. Matrix Form

5-8

UM 620341002
30 September 1990

those that the presenting team has chosen. The mean-
ings should not be questioned at this point. A change
in meaning would require many changes in the diagrams.

3. Present function view diagrams for review.

The function view walk-through process is an orderly,
step-by-step process where questions can be asked that may
identify potential weaknesses in the model. Six steps of a
structured walk-through follow.

Model corrections may be proposed at any step. These cor-
rections may be noted for execution at a later date or adopted
immediately.

Step 1: SCAN THE ENTITY POOL

This step allows the reader to obtain general impressions
about the content of the model. Since the entity pool also
lists deleted entities, the reader gets a better feel for the
evolution of the model to its current state. At this point,
the reader should examine the definitions of the entities.

Criteria For Acceptance:

1. The chosen entities represent the types of information
necessary to support the environment being modeled.

2. The chosen entities are, in the reviewer's opinion,
relevant based on the purpose and scope of the mcdel.

Unless a problem is very obvious, criticism should be de-
layed until Step 2 below. However, first impressions should
not be lost. They might be put on a blackboard or flip chart
pad until resolved.

Step 2: READ THE FUNCTION VIEW DIAGRAM

Once the reader understands the entities, the diagram is
read to determine if the relationships are accurately
represented.

Criteria For Acceptance:

1. The relationship cardinality conforms to the refine-
ment rules defined in the IDEFIX Manual.

2. All required relationships are shown either directly
or indirectly.

3. The diagram is structured so it is easy to read
(minimal line crossing, related entities are located
close to each other).

5-9

UM 620341002
30 September 1990

Step 3: EXAMINE THE KEY ATTRIBUTES

This step serves to verify that the specified key will in
fact uniquely identify one instance of an entity. The reader
verifies that all members/attributes of the primary key are
necessary.

Criteria For Acceptance:

1. The values of the primary key attributes in combina-
tion uniquely identify each instance within the
entity.

2. The primary key attributes are not in violation of the
No-Null and No-Repeat rules.

Step 4: EXAMINE THE KEY ATTRIBUTE MIGRATION

This step examines the migration of primary keys from the
parent to the child entities.

Criteria For Acceptance:

1. The primary key migration conforms to the modeling
rules.

2. The owner entity of all foreign keys are present in
the model.

3. Primary key migration is consistent with the relation-
ship.

Step 5: EXAMINE NONKEY ATTRIBUTES

The attributes that are not members of the primary key are
analyzed for each entity.

Criteria For Acceptance:

1. The attributes do not violate the No-Null and No- Re-
peat rules.

2. The attributes serve to capture information that is
within the scope of the model.

3. Each attribute is unique within the model.

Step 6: SET THE STATUS OF THE DIAGRAM

1. Recommended as it stands.

2. Recommended as modified.

3. Draft: Too many changes made, a redraw is necessary,
and future review is required.

5-10

UM 620341002
30 September 1990

4. Not Accepted: A complete re-analysis is required.

5-11

UM 620341002
30 September 1990

APPENDIX A

IDEFIX GLOSSARY

Acceptance Review Committee

One of the members of the functional organization whose
responsibility is to provide guidance and arbitration over the
modeling efforts and to pass final judgment over the completed
product (i.e., model acceptance).

Assertion

A statement that specifies a condition that must be true.

Attribute

A characteristic or element of data describing something
about an entity. An attribute is given a specific name
denoting its meaning (e.g., hair color) and a value (e.g.,
brown).

Attribute, Inherited

An attribute that is the primary key (or part of the
primary key) of another entity. It migrates from that entity
because of a relationship between the entities. Also called a
migrated attribute.

Attribute, Migrated

Same as Inherited Attribute.

Attribute, Owned

An attribute that is not inherited. Ownership is relative
to an entity. An attribute can be owned by only one entity.

Attribute Population

That effort by which "ownership" of attribute classes is
determined.

Attribute Role

Describes the function played by an attribute in
describing an entity, including inherited (= migrated), owned,
primary key, alternate key.

Attribute Value

The exact data value given to an attribute (e.g.,
attribute: hair color; attribute value: brown).

A-I

UM 620341002
30 September 1990

\-Author Conventions

The special practices and standards developed by the
modeler to enhance the presentation or utilization of the
model. Author conventions are not allowed to violate any
methodology rules.

Constraint

An assertion whose purpose is to explicitly specify data
meanings.

Constraint, Boolean

A condition that restricts instances of child entities in
multiple relationships with the same parent entity. The
operator "AND" means the parent must have child entity
instances in both relationships. The operator "OR" means the
parent may have child entity instances in either or both
relationships. The operator "XOR" means the parent may have
child entity instances in at most one of the relationships.

Constraint, Cardinality

A limit on the number of occurrences of a child entity
that may exist in a relationship to a parent entity.

Constraint, Existence

A condition that an instance of one entity cannot exist
unless an instance of another related entity also exists.

Data Collection Plan

The plan which identifies the targets e.g., the
functions, the departments, or the personnel, which are the
sources of the material used for the development of the model.

Domain

A set of allowable values. A domain may be specified by a
datatype (e.g., integer, date, money) and may include
constraints on the range of values (e.g., greater than zero;
between 2 and 12; 17 characters; from the list 2,5,10,16). A
domain may be assigned to one or more attributes.

Entity

A collection of like instances (persons, places, things,
or events) that is named by a generic noun, has a key (which
will uniquely identify each instance), and has one or more
attributes (which will describe each instance).

A-2

UM 620341002
30 September 1990

Entity Diagram

A diagram which depicts a "subject" entity and all
entities directly related to the subject entity.

Entity Instance

An occurrence of a named entity. It can be specifically
identified by the value of its key. Once the instance is
determined, the values of all of the other attributes of that
instance are also known.

Entity, Category

An entity whose instances are subclassifications of
instances of another entity which represents the same real-
world thing. All attributes of the generic entity also pertain
to the category entity. For example, "salaried employee" is a
category entity of the generic "employee".

Existence Dependency

A constraint between two entities indicating that
instances of the dependent one cannot exist without being
related to an instance of the other. Existence dependency is
referential integrity plus the constraint that the foreign key
cannot have a null value.

Expert Reviewer (Commenter)

One of the members of the modeling team whose expertise is
focused on some particular activity within the manufacturing
enterprise, and whose responsibility it is to provide critical
comments on the evolving model.

FEO

An acronym meaning For Exhibition Only; it is one vehicle
by which supportive or explanatory information is provided for
the model, via some combination of drawings, text, etc.

Functional Dependency

A constraint between two attributes indicating that the
value of one is determined by the value of the other.

IDEF Kit Cycle

The regular interchange of portions of the model in
development between the modeler and the readers/expert
reviewers, the purpose of which is the isolation and detection
of errors, omissions, and misrepresentations.

A-3

UM 620341002
30 September 1990

IDEFIX Model

A graphic representation of data meanings in an
environment. It displays the basic structure and relationships
of data. The product of using the extended ICAM Definition
Language for information/data modeling (IDEFIX).

Identifier Dependency

A constraint between two entities that requires the
foreign key in the dependent entity to be (part of) its primary
key. Identifier dependency is a stronger form of existence
dependency.

Key

An attribute, or combination of attributes, of an entity
whose values uniquely identify each entity instance.

Key, Alternate

A key other than the primary key of an entity.

Key, Composite

A key comprising two or more attributes.

,Key, Compound

Same as Key, Composite.

Key, Foreign

Attributes that appear in a dependent entity and also as
the primary key in another entity.

Key, Member

An attribute that is part of a ccmposite key.

Key, Migrated

Same as Foreign Key.

Key Migration

The process of placing the primary key of a parent/or
generic entity in the child or category entity in a
relationship.

A-4

UM 620341002
,30 September 1990

Key, Primary

The key selected for migration for all relationships in
which the entity participates as a parent or generic entity.

Modeler (Author)

One of the members of the modeling team whose
responsibilities include the data collection, education and
training, model recording, and model control during the
development of the model; the modeler is the expert on the
IDEFlX modeling methodology.

Normal Forms

Conditions reflecting the extent of the refinement in the
identification of entities and the placement of attributes into
entities in a data model. Each normal form reflects
successively tighter control over the relationships between the
attributes of an entity.

o First Normal Form (lNF) - there is no more than one
value for any attribute in an instance of the entity.

o Second Formal Form (2NF) - INF, plus non-key
attribute's value is determined by the entity
instance's entire key, not by just part of it. An
entity in INF with a key that is not compound is
automatically in 2NF.

o Third Normal Form (3NF) - 2NF, plus no non-key
attribute's value is determined by another non-key
attribute's value. An entity in 2NF with only one
non-key attribute is automatically in 3NF.

o Fourth Normal Form (4NF) - 3NF, plus non attribute of
a compound key of three or more attributes is more
closely related to one of the other two attributes of
the key than to any other. An entity in 3NF whose key
contains fewer than three attributes is automatically
in 4NF.

o Fifth Normal Form (5NF) - 4NF, plus no attributes can
be split off into another entity without introducing
new meaning. An entity in 4NF whose key contains
fewer than three attributes is automatically in 5NF.

Normalization

The process of refining and regrouping attributes inentities according to the normal forms, making the data
meanings more explicit.

A-5

UM 620341002
-. 30 September 1990

Phase Zero

The initial efforts of the modeling activity in which the
Context Definition is established i.e., project definition,
data collection plan, author conventions, standards, etc.

Phase One

The second in the orderly progression of modeling efforts
during which the entities are identified and defined.

Phase Two

The third in the set of orderly progression of modeling
efforts during which the entities are identified and defined.

Phase Three

The fourth set in the orderly progress of model
development, during which keys are identified and defined.

Phase Four

The fifth effort in the progression of orderly model
development during which the "non-key" attributes are
identified and defined.

Project Manager

One of the members of the modeling team whose respon-
sibilities include the administrative control over the modeling
effort. The duties include: staff the team, set the scope and
objectives, chair the Acceptance Review Committee, etc.

Relationship

A logical association between entities.

Relationship Cardinality

The number of entity instances that can be associated with
each other in a relationship. See Constraint, Cardinality.

Relationship Name

A phrase-like definition which reflects the meaning of the
relationship expressed between the two entities shown on the
diagram on which the name appears.

Relationship, Nonspecific

A relationship in which neither entity can be said to be
independent of or existence dependent on the other. Examples

A-6

UM 620341002
30 September 1990

are many-to-many relationships and zero-or-one-to-many

relationships. '-

Relationship, Specific

A relationship in which one entity is existence-dependent
on the other.

Role Name

A name assigned to a foreign key that appears more than
once in an entity.

Schema

A definition of data structure

o Conceptual Schema: A neutral definition of the
integrated, shared data within an enterprise. It is
represented by a semantic data model which conforms to
the rules of refinement, and is in fifth normal form.

o External Schema: Describes an application's or end-
user's perspective of shared data.

o Internal Schema: Describes a DBMS's physical
representation of shared data.

Semantics

The meanings of words and sentences in a language, or of
constructs in a model. Contrast with Syntax.

Source(s)

One of the members of the modeling team whose
responsibility it is to provide the elements of information
(documents, forms, procedures, knowledge, etc.) on which the
development of the model will commence and continue.

Syntax

Grammar. A set of rules for forming meaningful phrases
and sentences from words in a vocabulary. Contrast with
Semantics.

Validation

An effort which results in the informed consensus of the
experts who are kncwledgeable about the model; the model is
considered "valid" if the majority of experts agree that it
appropriately and completely represents the area of concern.

A-7

UM 620341002
30 September 1990

APPENDIX B

COMPARISON OF IDEFIX WITH IDEFI

1. Terminology

The recommended IDEFI-Extended terminology is slightly
different from the IDEFI terminology. The new terminology is
more consistent with the terminology used by the data modeling
community at-large. It is also more consistent with the way
that IDEFI users actually refer to the model constructs.

The following table shows the correspondence in terms for
concepts that occur in both IDEFi-Extended and IDEFI.

IDEFi-Extended IDEFI

entity entity class

attribute attribute class

relationship relation class

candidate key alternate key class

primary key key class

primary key with alternate key classes
alternate key(s)

foreign key migrated key class

entity instance entity

attribute value attribute

relationship instance relationship

The rest of this appendix uses the recommended IDEFI-
Extended terminology, even when referring to constructs of an
IDEFI model.

The IDEFi-Extended terminology is more consistent with the
evolving industry-standard vocabulary of the data resource
management field. The relational model (developed by IBM and-
others) and the entity-relationship model (developed by UCLA
and others) use the IDEFI-Extended terms.

IDEFi-Extended gives the simpler terms to the concepts
that are used more often. For example, modelers commonly deal
with entities, but only rarely with entity instances.

B-1

UM 620341002
30 September 1990

2. Entity Syntax

The entity-related semantic constructs that IDEFI-Extended
supports are:

2.1 Entities

2.2 Identifier-independent entities vs. identifier-
dependent entities

2.3 Entity names

2.4 Entity numbers

The following paragraphs first indicate how IDEFI supports
these constructs, then discusses the similarities or
differences in the IDEFl-Extended approach.

2.1 Entities

IDEFI represents entities by rectangular boxes, as does
IDEFl-Extended.

2.2 Identifier-Independent vs. Identifier-Dependent Entities

IDEFi-Extended distinguishes between identifier-
independent entities, which depend on no other entities for
their identification, and identifier-dependent entities, which
do depend on other entities for their identification (and
existence).

By contrast, IDEFI uses the same symbol (a rectangular box
with square corners) for both constructs. IDEFl-Extended's
syntax allows the identifier-independent entities to be more
prominent in a data model diagram.

Identifier-independent entities are drawn in IDEFI-
Extended as rectangular boxes with square corners. Identifier-
dependent entities are drawn as rectangular boxes with rounded
corners.

Note that in IDEFl-Extended, entity identifier
independence/dependence is relative to the entire model, not
just relative to a particular relationship.

2.3 Entity Names

IDEFI's entity label is placed inside the entity box. The
entity name is provided as part of the definition.

B-2

UK 620341002
30 September 1990

By contrast, IDEFi-Extended's entity name is placed above
the entity box, as it applies to everything in the box. This
convention allows modelers to quickly sketch model diagrams.
Entity labels are not used in IDEFIX since entity names may use
abbreviations.

2.4 Entity Numbers

IDEFI's entity-numbering scheme blocks out a significant
portion of an entity box. The entity number is placed in the
upper left corner of the box, with a diagonal line setting off
the area.

By contrast, IDEFI-Extended's entity number is placed such
that it occupies no space in the entity box. It follows the
entity name, and is separated from the name by a "/".

3. Attribute Syntax

The attribute-related semantic constructs that IDEFI-
Extended supports are:

3.1 Attributes

3.2 Candidate-key attributes

3.3 Primary-key attributes

3.4 Foreign-key attributes

3.5 Role names

3.1 Attributes

IDEFI places attr-butes within entity boxes, as does

B-3

. UM 620341002
--30 September 1990

ICAM'8
SEMANTIC CONSTRUCT IDEF 1 -EXTENDED IDEF I

ENTITY

E.PLOYEUI22m €e-

depends on no
other amity #or awi"T
Its Identification Oson Clss

EMWIcue.oNs

EMPLOYEUI312

ENTITY that
depends on some
other entity tor
Its Identfilcalon

Figure B-1. IDEFlX vs. IDEF1 Entities

B-4

UM 620341002
30 September 1990

IDEFI-Extended. Attribute names are used in IDEFi-Extended in

the place of attribute labels used in IDEFI.

3.2 Candidate-Key Attributes

A candidate key is one or more attributes, whose values
uniquely identify entity instances. IDEFl underscores
candidate-key attributes. If there is more than one candidate
key, then each is enclosed in parentheses. If the candidate
keys are compound and overlap, then the attribute that appears
in multiple keys appears multiple times in the entity.

In contrast to IDEFl, IDEFI-Extended requires that one of
the candidate keys be designated the primary key. This key is
the one that is migrated through relationships to other
entities. The other candidate keys are called alternate keys.
Designation of a primary key is necessary for automated
normalization and consistency checking.

IDEFi-Extended marks each attribute of an alternate key
with an alternate key number following the attribute name:
(AKn). An attribute may be a component of multiple alternate
keys, and therefore have multiple alternate key numbers. For
example, consider the following three attributes:

DRAWING-# (AK1)
REVISION-# (AKI, AK2)
PART-# (AK2)

One of the alternate keys is DRAWING-#, REVISION-#. This
key is designated as AK1. The other alternate key is PART-#,
REVISION-#. This key is designated as AK2. REVISION-# is a
components of both alternate keys. As an attribute, REVISION-#
appears only once in the entity. By contrast, IDEF1 would show
REVISION-# twice in the entity, once for each of the alternate
keys.

3.3 Primary-Key Attributes

IDEF1 does not distinguish a primary key from any other
candidate key. All candidate-key attributes are underscored.

By contrast, IDEFI-Extended places primary-key attributes
above a line dividing the entity box. IDEFl-Extended's main
advantage here is a visual one. The most important attributes
are easily distinguished, because they are obviously separated
from the non-key attributes. Automated graphing support also
becomes less device-dependent if underscores are not used in
the graphic syntax.

B-5

UM 620341002
30 September 1990

3.4 Foreign-Key Attributes

A foreign-key attribute is an attribute that is part of
the primary key of another entity.

IDEFI designates a foreign-key attribute (called a
migrated key class) by its having the same name as where it
appears in a candidate key. IDEFI attributes must have
identical names to be detected as foreign-key - primary-key
pairs.

By contrast, IDEFi-Extended marks foreign-key attributes
by following the name with (FK). This makes it clear which
attributes have migrated in from other entities. A foreign-key
attribute may be a primary-key attribute, an alternate-key
attribute, or a non-key attribute. A foreign-key attribute is
always part of the primary key in the entity from which it
migrates.

3.5 Role Names

IDEFI does not support role names. If an attribute
migrates in through two relationships, then it appears twice
with the same name in each entity.

IDEFI-Extended supports role names for attributes where
"second-names" better indicate their meaning. These attributes
are always foreign-key attributes. They commonly are attribute
that migrate in through multiple relationships, appear twice in
the entity and need to be distinguished. Automated
normalization requires that they be given different names to
indicate that they have different meanings.

For example, consider a bill-of-materials structure
between entities PART and COMPONENT. PART's primary-key
attribute PART# migrates into COMPONENT twice, once through the
relationship IS-IN and once through the relationship HAS. In
an IDEFI model PART# would appear twice in COMPONENT. By
contrast, IDEFI-Extended supports giving rolenames to these
appearances of PART#: one appearance could be named COMPONENT-
#.PART#; the other appearance could be named ASSEMBLY-#.PART#.
Software support then is able to detect the two roles for the
foreign-key and not interpret them as being redundant.

B-6

UK 620341002
30 September 1990

ICAMs
SEMANTIC CONSTRUCT IOEF1 -EXTENDED IDEF I

ATTRIBUTE OPRMUI

IEPARTMENT-tf10 .~p [!!~UN.SZ we.

OEPARTMENT-LOC Atb. DEPARTMENT.LOC Nwe
Afllibut. DEPARTMENT .. ,

RXx

ANKeyt.two

Alflhlbles 041. Mtmuet.W 4M 00e

Rol* N""M *.g., COUPONENT*.PAR?9

Figure B-2. IDEFlX'vs. IDEFi Attributes

B-7

UM 620341002
30 September 1990

4. Relationship Syntax

The relationship-related semantic constructs that IDEFI-

Extended supports are:

4.1 Connection Relationships

4.2 Categorization Relationships

4.3 Identifier Dependency

4.1 Connection Relationships

An connection relationship is an association between two
unlike entities. For example, DEPARTMENT and EMPLOYEE are
related by a connection relationship named EMPLOYS. DRAWING
and PART are related by a connection relationship named
SPECIFIES.

IDEFl connects the two entities that participate in a
connection relationship by a line. The symbols at the ends of
the line indicate how many instances of each of the entities
can be related to how many instances of the other entity. The
symbols are called cardinality symbols. IDEFi-Extended uses
basically the same approach.

However, IDEFI uses two fundamentally different symbols to
represent relationship cardinality. Cardinality of zero-or-
more is indicated by an open diamond; cardinality of zero-or-
one is indicated by a half-diamond on the line. Because it
looks very much like an arrow, the half-diamond can be
misinterpreted as showing data flow.

By contrast, IDEFI-Extended always uses a "big-dot" symbol
to represent the cardinality of relationships. The big-dot is
annotated to indicate exact cardinality. Unadorned, the big-
dot means "zero, one or many". A "p" indicates positive (i.e.,
one-or-more); a "z" indicates zero-or-one; an "n" indicates a
specific number (i.e., = n). IDEFi-Extended uses the big-dot
symbol because it is the largest single-character symbol and is
not distorted by photo-reduction. It also is easy to draw
freehand.

4.2 Categorization Relationships

IDEFI does not represent categorization relationships in a
satisfactory way. It uses the same syntax for a categorization
relationship that it uses for a connection relationship with
cardinality of zero-or-one. IDEFI relies on the modeler to
assign a relationship name of "can be" to distinguish the

B-8

UM 620341002
30 September 1990

categorization from a connection. A category entity typically
is discovered through application of the IDEFI "No-Null Rule".

Additionally, IDEFI is not able to bundle together the
category entities for a generic entity. An IDEFl model can
indicate that an EMPLOYEE "can be" zero-or-one HOURLY-EMPLOYEE,
and an EMPLOYEE "can be" zero-or-one SALARIED-EMPLOYEE, and an
EMPLOYEE "can be" zero-or-one UNCLASSIFIED-EMPLOYEE. It cannot
indicate that an EMPLOYEE instance "can be" only one of these
categories.

By contrast, IDEFi-Extended uses a line with an open
circle to represent a categorization relationship. The
graphics of a categorization relationship are obviously
different from those of a connection relationship.

The discriminator attribute of the generic entity appears
across the circle. The discriminator's value determines which
of the category entities exists for this particular generic
entity instance.

If the complete set of categories is represented, then the
categorization circle has a double baseline. This means that
every possible value of the discriminator is represented by a
category entity. For example, if there were only three
possible EMPLOYEE subtypes, and all three were modeled as
category entities, then a double baseline would be used.

However, if an incomplete set of categories is.
represented, then the categorization circle has a single
baseline. This means that the discriminator hay have a value
that is not represented by a category entity. For example, if
only two of the three possible EMPLOYEE categories were
modeled, then a single baseline would be used. This is common
when a category entity has no attributes of its own, separate
from the generic entity.

A categorization relationship does not have a name shown
on the diagram. When the relationship is read, the name "can
be" is used.

4.3 Identifier Dependency

An identifier dependency occurs when the migrated key
attributes become (part of) the primary key in the child
entity. The identification of the child depends on the key of
the parent entity. Thus, the child entity is identifier
dependent on the parent. It is completely dependent on the
parent and cannot exist without the parent.

IDEFl implies identifier dependency when foreign-key
attributes (i.e., the migrated-key attributes) are underscored.

B-9

UM 620341002
30 September 1990

By contrast, IDEFi-Extended makes identifier dependencies
obvious in the model graphics. It represents a relationship
with identifier dependency by a solid relationship line and a
relationship without identifier dependency by a dashed
relationship line. Identifier dependency is a characteristic
of the relationship between two entities, therefore is
represented by the graphics of the relationship.

Categorization relationships always have identifier
dependency. Connection relationships may or may not have
identifier dependency.

5. Examples

The following are examples of the similarities and
differences between the graphic representations of IDEFI and
IDEFl-Extended. The numbers correspond to the diagrams on the
next several pages.

1. Two entities ALPHA and BETA, with a non-identifying one-
to-many relationship REL. ALPHA's primary key A becomes a
non-key-foreign-key attribute in BETA.

2. Two entities ALPHA and BETA, with an identifying one-to-
many relationship REL. ALPHA's primary key A becomes part
of BETA's primary key.

3. Two entities ALPHA and BETA, with an identifying one-to-
zero-or-one relationship REL. ALPHA's primary key A
becomes BETA's primary key.

4. Two entities ALPHA and BETA, with a non-specific
relationship REL. An ALPHA instance can be related to
many BETA instances. A BETA Instance can be related to
zero-or-one ALPHA instance.

B-10

UM 620341002
30 September 1990

ICAM's

SEMANTIC CONSTRUCT IDEF1 .EXTENDED IDEF I

RELATIONSHIP RELATION
CLASS NAME

Relationship ET1NIPAU

Cardlamlfly444

Joe -a 6.1 al 6.1

Categorization .41-GENERIC ENTITY ON shown. suPI by
RelationshipDtCINAO .. ,

4CATEGORY
ENTITIES

ite
eatesecle

I II
Identifier

Dependenco 0XV11"y nefun

Seld ,au*Waml ooo@gu Maisg close.
aft- dsls -41 as w~e INw
dependence dopeadeoe.

Figure B-3. IDEF1X vs. IDEFi Relationships

B-il

UM 620341002
30 September 1990

5. Two independent entities ALPHA and BETA, with their
dependent intersection entity AB-RES. ALPHA's primary key
A becomes a key foreign-key in AB-RES, because
relationship R1 is identifying. BETA's primary key B
becomes a non-key foreign-key in AB-RES, because
relationship R2 is non-identifying.

6. A bill-of-materials structure between independent entity
PART and dependent entity COMPONENT. PART's primary key
PART# has rolename COMP# where it migrates into COMPONENT
through relationship HAS. Both are identifying
relationships.

7. EMPLOYEE is a generic entity, with categories SALARIED-EMP
and HOURLY-EMP. Every EMPLOYEE instance must have either
a corresponding SALARIED-EMP or HOURLY-EMP instance, with
the same primary key SOCNO value. (Note that the IDEFI
model does not represent the mutual exclusivity of the two
relationships nor the requirement that one must exist.)
DEPT# and JOBCODE in EMPLOZEE are both non-key foreign-key

8. PURCHASED-PART has three candidate keys: VENDOR-PART# is
the primary key; D.IG#,REV# is an alternate key; PART#,REV#
is an alternate key.

B-12

UM 620341002
30 September 1990

EXAUPI i

ICAM's
IDEF 1 -EXTENDED IDEF1

ALPHA/1

AAX X
y Y

MEL RELI
I

BETAI2

B 21A
AA (FK) w

w z
Z BETA

Figure B-4. Example 1

B-13

UM 62034100230 September 1990

EXAMPLE 2

ICAM's
IDEF 1 -EXTENDED IDEF1

ALPHAII

LZLI
!ALPHA I

REL REL

BIETA/2
rB 2 31~A(F /

z BETA

Figure B-5. Example 2

B-14

UM 620341002
30 September 1990

EXAMPLE 3

ICAM's
IDEF 1 -EXTENDED IDEF 1

ALPHAI1

A /X
x

IEL Z REL

BETA2 Z

BEBETA

Figure B-6. Example 3

B-15

UM 620341002
30 September 1990

ICAM's
IDEF1 -EXTENDED IDEFIg

ALPHAI

ALPHA

MEL I o REL

BETA

Figure B-7. Example 4

B-1,6

UM 620341002
30 September 1990

ICAMs
IDEF1 -EX TENDED IDEFI

ALPHAII BETAI2

A a 21
X z -yw

ALPHA Bj1ETA

RI R2 RI o R

AB-RESIUS

'A (FK) 66r a
B(FK) a

AB.RES

Figure B-8. Example 5

B- 17

UM 620341002
30 September 1990

EXAWLE 6

ICAM's

IDEF 1 EXTENDED IDEF 1

PART14S 4 AI

PART S1E

SIZE DESCRIPTION
DESCRIPTIONT I EPART

IS-IN HAS IS-IN HAS

COMPONENTI4,

ASSM#.PART#(FK P

OTY OTY

COMPONENT

Figure B-9. Example 6

B-18

UM 620341002
30 September 1990

EXANiKlV 1

ICAM's
IDEF 1 -EXTENDED IDEF 1

EMPLOYEE/2

SOCNO 2 NAMEEMP-TYPE
NAME DEPT
DEPT# (FK) " "
JOBCODE (FK)

CAN-BE CAN-BE
EM TPE 41 0

SALARIED-EMPI/9 HOURLY-EMP/92
SOCNO (FK SOCNO (FK) 91S2Q.
SALARY-RATE HOURLY-RATE SALARY-RATE HOURLY-RATE

S---ED-EMP-I- HOURLY-EMp

Figure B-10. Example 7

B-19

UM 620341002
30 September 1990

ICAM's
IDEFI -EXTENDED IDEF 1

PURCHASED-PARTISfVENDOR-PA RTS OPYEHOR-PART
DWG# (Al) V(OWG#.REV9)
REV# (Al, A2) RVY M
PARTU (A2) UR"SED-PAjJ

Figure B-11. Example 8

B-20

UM 620341002
30 September 1990

APPENDIX C

REFERENCES

Brown, R.G., Logical Database Design Techniques, The Database
Design Group, Inc., Mountain View, CA, 1982.

Chen, P. P-S., "The Entity-relationship Model -- Toward a
Unified View of Data," ACM Trans. on Database Systems, Vol. 1,
No. 1, May 1976, pp. 9-36.

Codd, E.F., "A Relational Model of Data for Large Shared Data
Banks," Communications ACM, Vol. 13, No. 6, June 1970, pp. 377-
387.

Codd, E.F., "Extending the Database Relational Model to Capture
More Meaning," ACM Trans. on Database Systems, Vol. 4, No. 4,
December 1979, pp. 397-434.

D. Appleton Company, Inc., INFO Model-ER Reference Manual,
Manhattan Beach, CA 1982.

D. Appleton Company, Inc., Data Modeling Technique, Product
Functional Specification, PFS-DMT-3.0, Manhattan Beach, CA
1985.

Hammer, M. and D. McLeod, "The Semantic Data Model: a Modelling
Mechanism for Data Base Applications," Proc. ACM SIGMOD Int'l.
Conf on Management of Data, Austin, TX, May 31-June 2, 1978,
pp. 26-36.

Shipman, D.W., "The Functional Data Model and the Data Language
DAPLEX," ACM Trans. on Database Systems, Vol. 6, No. 1, May
1981, pp. 140-173.

Smith, J.M. and D.C.P. Smith, "Database Abstractions:
Aggregation," Communications ACM, Vol. 20, No. 6, June 1977,
pp. 405-413.

Smith, J.M. and D.C.P. Smith, "Database Abstractions;
Aggregation and Generalization," ACM Trans. on Database
Systems, Vol. 2, No. 2, June 1977, pp. 105-133.

SofTech., ICAM Architecture Part II-Volume V - Information
Modeling Manual (IDEFI), AFWAL-TR-81-4023, Materials
Laboratory, Air Force Wright Aeronautical Laboratories, Air
62;1;2;6;7;8;9c Force Systems Command, Wright-Patterson Air Force
45433, June 1981.

C-I

